
Hyplets - Multi Exception Level Kernel towards

Linux RTOS

Raz Ben Yehuda
University of Jyväskylä
Jyväskylä , Finland
raziebe@gmail.com

Nezer Zaidenberg
University of Jyväskylä
Jyväskylä , Finland

nezer.j.zaidenberg@jyu.fi

ABSTRACT

This paper presents the concept of a Multi-Exception
level operating system. We add a hypervisor awareness
to the Linux kernel and execute code in hyp exception
level. We do that through the use of Hyplets. Hyplets
are an innovative way to code interrupt service routines
under ARM. Hyplets provide high performance, secu-
rity, running time predictability ,an RPC mechanism
and a possible solution for the priority inversion prob-
lem. Hyplets uses special features of ARM8va hypervisor
memory architecture.

1 INTRODUCTION

Available technologies today based on virtualization of-
fer Microvisors that divide the computer into VMs, each
VM encapsulating with its own hardware and has its
own operating system. Many if not all of the above per-
ceptions separates between higher exception levels to
the lower exception levels.
This paper presents the hyplet ISR as a para-

virtualization technique to reduce kernel to user latency
to less than a microsecond on average.
We will also demonstrate a new RPC (Remote Proce-

dure Call) functionality. Our RPC is a type of hypervi-
sor trap where the user process sends a procedure id to
the hypervisor to be executed in high privileges with no
interruptions in another process address space. We use
the term hypRPC for our RPC as a mixture between
hypercall and RPC.

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SYSTOR, 2018, Haifa, Israel

© 2018 Association for Computing Machinery.

ACM ISBN 123-4567-24-567/08/06. . . $15.00
https://doi.org/10.475/123 4

Hyplets are based on the concept of a delicate address
space separation within a running process. Instead of
running multiple operating systems kernels in order to
segment and divide the system resources, the hyplet di-
vides the Linux process into two execution modes. One
part of the process would execute in an isolated, non-
interrupted privileged safe execution environment while
other parts of the process would execute in a regular
user mode. However, both execution modes run in the
same Application processors.
We believe that Hyplets are suitable for hard real time

systems. We will provide benchmarks and compare our
solution to Linux RT PREEMPT and to a standard
Linux. We chose RT PREEMPT as it is considered an
open source non-commercial RTOS on Linux.

2 HYPLET ARCHITECTURE

In ARM, each of the four exception levels provides its
own state of registers and can access the registers of
the lower levels but not higher levels. This architecture
dictates that the translation tables of the different ex-
ception levels are distinct. This means , that EL2 (hy-
pervisor mode) may point to any memory translation
table while the generic operating system, running in
EL1 uses another translation table. This way, we can
map an executing process (program) or part of it to
the hypervisor, and we automatically gain access to the
program address space, without any need to perform
context switches or relocations.
To make sure that the hyplet code is always accessible

and evacuation of the hyplet code and data from the
current translation table is disabled, we chose to use
TTBR0 EL2 register to constantly accommodate the
hyplet code. When a process address space is mapped
to EL1 and EL2 excpetion levels it is reffered as a dual
mapping of the process.

2.1 Hyplet - User Space Interrupt

In Linux, when an interrupt interrupts the processor, it
triggers a path of code that serves the interrupt and in
some cases ends up waking a pending process. The time

116

https://doi.org/10.475/123_4

SYSTOR, 2018, Haifa, Israel Raz Ben Yehuda and Nezer Zaidenberg

to wake up the process is the interrupt latency the hy-
plet reduces. To achieve this, as the interrupt reaches the
processor, instead of executing the user program code in
EL0 after the ISR, a special procedure of the program
is executed in a hypervisor mode before the kernels ISR.
This is possible due to the dual mapping. The hyplet
does not require any special threads and should be im-
plemented as a small procedure. Since hyplets are actu-
ally ISRs they can be triggered in high frequencies. This
way we can have a high frequency user space timers in
small embedded devices.

2.2 Hypervisor RPC

Interprocess communications (IPC) in real time sys-
tems is considered a latency challenge. One reason is
because there is the possibility that the receiver is not
running therefore the kernel needs to switch contexts,
which is considered a penalty. IPC is also described as a
possible priority inversion scenario problem. RPC (Re-
mote procedure call) is a form of IPC in which param-
eters are transferred in the form of function arguments
and response is returned in the form of function return
value. The RPC mechanism handles the parsing and
handling of parameters and return values. We will show
that it is possible to define a procedure in the address
space of a receiving process that is invoked as a callback
through the hypervisor whenever a sending process trig-
gers an RPC. In this paper hyp RPCs are a form of IPC,
i.e they are local.

3 EVALUATION

All tests were performed on Raspberry PI 3.

3.1 Interrupt Latency

We tested Hardware to hyplet latency. The Interupt la-
tency was 2.5µs. Evidently,hyplets have a low latency
and also are suitable for hardware that generates inter-
rupts at different rates.

3.2 Timer

We compared the responsiveness of hyplets to Linux RT
PREEMPT.
In the hyplet case, 99.96 % of the samples were bel-

low 1µs latency, and 100% were bellow 5µs. In RT PRE-
EMPT case, the upper boundary is 47µs and the aver-
age is over 14µs. It is evident that ISR-hyplets provide
hard real time in a regular kernel.

3.3 Fast RPC

We evaluated the round trip of calling a null function (it
just returns the time). A common IPC usually involves

two context switches in a full round trip. The below
benchmark is between two processes, a receiver and a
sender. The receiver maps a hyplet to a single core, and
the sender calls it. There are four types of tests:

• Ref Duration of the function when called in the
process.

• Hyplet Duration of the function when called by
a hypRPC and the sender and receiver share the
same core.

• IPI-hyplet Duration of the function when called
by a hypRPC when the sender and receiver do not
share the same core

• Standard Linux The sender and receiver ex-
change is undertaken by Posix semaphores. The
receiver waits on a semaphore; the sender awakes
it and then waits on a second semaphore; the re-
ceiver executes the null function, and releases the
sender.

• Linux RT PREEMPT Like Standard Linux but
over RT PREEMPT.

Min Avg Max

Ref 104ns 156ns 520ns
Hyplet 520ns 520ns 4.2µs
IPI-hyplet 3.4µs 6µs 21µs
Normal Linux 2.3µs 102µs 208µs
RT PREEMPT 12µs 14µs 340µs

It is evident that hyplets are the fastest.

4 OTHER FEATURES

4.1 Security

We provide a safe execution environment for the operat-
ing system kernel so that even if there is a fault in the
hyplet or if malicious data (that somehow crashes the
hyplet) arises in the computer we can choose not to stop
(or panic in Linux terms) the operating system. This is
possible because the fault entry in EL2 handles the er-
ror as if it is a user space error. We can access hardware
and protect its data. This can be done by reading data
into a secured memory that is not accessible from EL1.

4.2 Temporality

Interrupts service routines rarely change ,i.e. it is not
easy to modify a behavior of an interrupt routine in real
time (while the device is running) .In the hyplet case,
instead of modifying the kernel drivers, we can kill the
user space hyplet program and run a new hyplet. We
also have an abort mechanism that protects the hyp-
ISR from crashing the operating system when there is
a failure. The hyplet will fault like any other user space
task.

117

	Abstract
	1 Introduction
	2 Hyplet Architecture
	2.1 Hyplet - User Space Interrupt
	2.2 Hypervisor RPC

	3 Evaluation
	3.1 Interrupt Latency
	3.2 Timer
	3.3 Fast RPC

	4 Other features
	4.1 Security
	4.2 Temporality

