
POSTER: Accelerating Unmodified Databases using
Persistent Memory and Flash Storage Tiers

Amit Golander
NetApp

Amit.Golander@netapp.com

Netanel Katzburg
NetApp

Omer Zilberberg
NetApp

ABSTRACT
Recent breakthroughs in Storage Class Memory (SCM) tech-
nologies have driven Persistent Memory (PM) devices to be-
come commodity off-the-shelf components in 2018. PM de-
vices are byte addressable, plug into the memory intercon-
nect, and run at near memory speeds, densities and price
points. PM availability is led by Fast PM, comprised from
backed-DRAM devices such as NVDIMM-N, and will follow
soon with Slow PM, comprised of new SCM materials, such
as Intel 3D XPoint NVDIMM. Fast and Slow PM devices
vary in speeds, densities and cost, but both are orders of
magnitude faster than Flash devices and an order of magni-
tude more expensive per GB.

A PM-based file system was shown to accelerate unmod-
ified transactional databases [2, 1], when the entire dataset
was placed on NVDIMM-N cards. Most databases however
are large and cannot fit entirely into the limited capacity
provided by PM devices and even if they could - the high
price per GB would prevent wide adoption.

This work explores accelerating unmodifed databases us-
ing software that supports both NVDIMM-N and Flash de-
vices and can transparently tier data between them. Ideally,
this would provide the performance benefits of PM, while
maintaining the cost structure of Flash solutions. We run
a transactional workload (DBT-2) on an unmodified Post-
gresql [3] database, and compare the default block-based file
system running on Flash NVMe to a file system, which is
the first to support auto-tiering between byte-addressable
NVDIMM devices and block-addressable Flash. The rest of
the server and the operating system version are identical for
both configurations (refer to Table 1).

M1FS auto-tiering between PM pages and Flash blocks
was implemented using the following architecture:

• Each 4KB of data can reside on a PM page, a Flash
block or both at the same time.

• Data is speculatively copied to a Flash block ahead of
needing to reuse the PM page, in order to hide the
slower Flash access time.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SYSTOR ’18, June 4–7, 2018, HAIFA, Israel
c© 2018 ACM. ISBN 978-1-4503-5849-1/18/06. . . $15.00

DOI: https://doi.org/10.1145/3211890.3211902

• Unless data is modified, an existing Flash copy is main-
tained in order to reduce Flash wearout.

• PM pages are maintained in many queues in order to
reduce the probability of lock contention when many
cores are used concurrently

• Page allocations are preferably done from PM attached
to the CPU socket (NUMA-aware FS)

Server w/ Traditional Server w/
block-based FS byte-addressable FS

Database Postgresql 9.5
OS Linux CentOS 7.2 (Kernel 4.5)
CPU Dual socket Intel Xeon E5-2650 v4

12 cores, 24 HW threads per socket; 2.20GHz
Memory 64GB DDR4 at 2133MHz (Volatile)

File System XFS M1FS v2.0.1
Storage 1600GB Flash NVMe Tier 1: 64GB NVDIMM-N

Tier 2: 1600GB Flash

Table 1: Hardware and software configuration

Figures 1a and 1b show that throughput and latency are
much better than traditional block-based solutions. They
show that performance degrades as the database size exceeds
the PM tier, but at an acceptable rate that corresponds
with how traditional storage degrades when exceeding main
memory size. Using NVDIMMs in conjunction with NVMe
achieved 1.8-3x improved response time, while serving 2.1-
2.4x more transactions per minute, and overall 4.2 to 5.6x
better. The overall speedup is relatively stable across all
database sizes.

0
50,000
100,000
150,000
200,000
250,000
300,000

<1 3.1-4.6 4.7-7.1 9.4-14.1 14.1-25

O
LT
P	
Tr
an

s/
M
in

DB	size	/	PM	capacity

Sensitivity	to	Database	size

DB	on	XFS DB	on	Plexistor

(a) Troughput improve-
ment

0

2

4

6

8

10

<1 3.1-4.6 4.7-7.1 9.4-14.1 14.1-25

Se
c

DB	size	/	PM	capacity

Response	Time	(under	heavy	load)

DB	on	XFS	(Avg.) DB	on	XFS	(90%tile)

DB	on	Plexistor	(Avg.) DB	on	Plexistor	(90%tile)

(b) Latency improvement,
lower is better

Figure 1: Performance enhancement. Response time is lower,
throughput is higher

1. REFERENCES
[1] A. Golander, S. Manole, and Y. Korman. Persistent

Memory over Fabric (PMoF). In SYSTOR 2017 Poster.

[2] N. Katzburg, A. Golander, and S. Weiss. Storage
becomes first class Memory. In ICSEE 2016, pages 1–5.

[3] PostgreSQL. The postgresql global development group.
www.postgresql.org/, 2016.

122

