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ABSTRACT
PCI Express (PCIe) was originally designed as a local bus
interconnect technology for connecting CPUs, GPUs and I/O
devices inside a machine, and has since been enhanced to be
a full-blown switched network that features point-to-point
links, hop-by-hop flow control, end-to-end retransmission,
etc. Recently, researchers have further extended PCIe into an
intra-rack interconnect designed to connect multiple hosts
within the same rack. To viably apply PCIe to such use cases ,
additional fail-over mechanisms are needed to ensure contin-
ued network operation in the presence of control plane and
data plane failures. This paper presents the design, implemen-
tation and preliminary evaluation of a fault-tolerant PCIe-
based rack area network architecture called Ladon, which
incorporates a fail-over mechanism that takes effective ad-
vantage of PCIe architectural features to significantly reduce
the service disruption time due to a control plane failure
of a PCIe switch. Empirical tests on an operational Ladon
prototype show that the proposed mechanism ensures that a
PCIe root complex failure has zero impact on the data plane
and incurs only a modest disruption time (less than 40 sec)
for the control plane services.

1 INTRODUCTION
Peripheral Component Interconnect Express (PCIe) [9] is
a computer expansion standard developed by the PCI Spe-
cial Interest Group (PCI-SIG) and is designed to serve as
a motherboard-level interconnect for on-board devices, a
passive backplane interconnect among boards, and an expan-
sion interface for connecting amachine with external devices
such as storage boxes. A PCIe network is a switched network
with serial point-to-point full duplex lanes, where each at-
tached PCIe device is connected to the network through a
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link consisting of one or multiple lanes. The set of devices
connected to a PCIe network form a PCIe domain, with one
of them serving as the root complex, which is responsible for
enumerating and configuring all other devices in the domain
and is usually connected to the CPU.
Recently, researchers have proposed to replace a top-of-

rack (TOR) Ethernet switch with a PCIe switch, which al-
lows all servers in a rack to share all I/O devices in the
rack [1, 4, 5, 7, 27] and to communicate with one another
directly over PCIe links [10, 16, 28]. To convert PCIe into a
viable system interconnect for inter-host communications
within a rack, one must first enable multiple hosts to sit on
the same PCIe network and directly communicate with each
other. Although the Multi-Root IO Virtualization (MRIOV)
standard [5], published in 2008, was proposed to support mul-
tiple root complexes in a single PCIe domain, no commercial
implementations of true MRIOV switches or devices exist
and there is no sign that there will ever be in the near future.
Another approach [27, 28] to establishing direct PCIe con-
nectivity among multiple hosts is to leverage a special type
of PCIe device called non-transparent bridge (NTB) [21, 24],
which is designed to enable one PCIe domain to directly
access resources in another PCIe domain without the in-
volvement of the latter’s root complex.

Although PCIe is designed to be lossless at the transac-
tion layer with a flow-control and retransmission mecha-
nism [9, 19], it does not support any high-level fault toler-
ance mechanisms that guarantee a PCIe network’s service
availability to the extent which rivals that of traditional sys-
tem interconnect technologies such as Ethernet, Infiniband
and Fiber Channel. Ladon [27, 28] is a PCIe-based intra-rack
interconnect technology that supports multi-host connectiv-
ity using NTB and provides a seamless fail-over mechanism
that effectively addresses the following challenges imposed
by the PCIe architecture:

• Because a PCIe domain’s root complex is solely re-
sponsible for the configuration of all the devices in the
domain, it represents a single point of failure in the
domain’s control plane.

• Because all devices in a PCIe domain form a hierarchi-
cal tree whose root is the root complex, it is inherently
difficult to provision redundancies and support multi-
ple paths between any two devices in the same PCIe
domain.
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• Since PCIe packet routing is based on target device ad-
dresses and PCIe device addresses cannot be modified
dynamically, it is thus difficult to dynamically re-route
PCIe packets when link/port failures occur.

This paper addresses the above fault tolerance challenges
associated with a rack-scale PCIe switch-based network that
assumes a SDN-like architecture, i.e., a central controller
(root complex) controlling the operations of a number of
packet-forwarding PCIe switch chips. To handle a root com-
plex failure, Ladon enforces a clean separation of control
plane from data plane, and augments the virtual switchmech-
anism with a device driver state saving and restore mech-
anism so that a slave root complex could seamlessly take
over after the master root complex dies. To enable continued
operation of a PCIe network in the event of a single PCIe
link/switch failure, Ladon partitions a PCIe domain into two
physically disjoint subdomains, connects every host in a rack
to two PCIe end points, each of which belongs to a separate
subdomain, assigns two distinct address ranges to each host,
and thus makes each host accessible through either one of
these two address ranges.

2 RELATEDWORK
Multi-server interconnection technologies such as Fiber
Channel, InfiniBand, and Ethernet play a critical role in to-
day’s HPC design. Traditionally, out of motherboard-level
application of PCIe is used as an I/O expansion switch, which
allows a system to support a larger number of PCIe I/O de-
vices where a single motherboard cannot accommodate. In
the blade server design, multiple servers can connect to one
PCIe expansion switch, but requires creating an isolated PCIe
domain for each server by re-partitioning a set of PCIe ports
to each domain. As a result, each PCIe domain is an inde-
pendent network without direct communication through the
expansion switch. Recently, several efforts have been pro-
posed to extend the use of PCIe as a high performance and
low power system interconnect solutions [2, 10, 16, 17, 26].

John Byrne et al. [10] shows a PCIe-based network based
on NTB to demonstrate performance gains and 60-124% bet-
ter energy efficiency. PEARL [26] demonstrates a power-
aware PCIe network and addresses the reliability of the root
complex failure by designing their proprietary communica-
tion chip. Memory Channel [12, 13] relies on the reflective
memory technology to build a cluster-wide shared memory
network. A cluster-wide memory address space is introduced
and for each node, a portion of its memory is mapped to the
global address space. RONNIEE Express Fabric [7] is an in
memory PCIe network for storage systems, which enables
remote memory access between hosts through PCIe and de-
livers high performance and scalable file system implemen-
tations. As a comparison, Ladon focuses the reliability issues

resulted from extending PCIe into an intra-rack interconnect
in a multi-host PCIe system.

Without MR-aware PCIe switch, using a PCIe domain iso-
lation and address translation device such as NTB becomes a
de facto solution to interconnecting multiple PCIe domains.
D. Riley [22] proposes using NTB to redirect CSR for shared
I/O devices. The redirected CSR requests are handled by the
management host on behalf of the compute host in order to
control the I/O devices. Similarly, K. Malwankar. [18] pro-
vides multiple proxy devices on a shared PCIe fabric. The
proxy device can be associated with a real I/O device by
copying the configuration space of the real device to the
proxy device. As a result, NTB devices are becoming preva-
lent as an external devices [21, 23] or embedded in the CPU
feature [24].
A server’s particular PCIe bridge connecting to another

server can be pre-configured as either in EP (End Point) mode
or RC mode (Root Complex), where the RC-mode server own
the PCIe switch’s domain and the rest of servers run in EP
mode. Several patents have proposed adding failure detec-
tion and cable redundancy for multi-host PCIe network. [20]
describes solving the master RC failure problem by enabling
all the other RCs to periodically detect the liveliness of mas-
ter RC, and elect the new RC using system-wise timer. [11]
presents a switch fail-over control mechanism by maintain-
ing the primary/secondary device table entry (DTE) for the
RC andmarks the secondary DTE as passive. Upon a fail-over
condition, updating the secondary DTE in the device table as
an active entry and forming a fail-over path to enable traffic
rerouting. Ladon is a software-based solution that leverages
the existing commodity, off-the-shelf components to ensure
continued network operation in the presence of any single
control plane and data plane failure.

3 PCI EXPRESS ARCHITECTURE
3.1 Overview
PCIe is a layered protocol consisting of a physical layer, a
data link layer and a transaction layer. The transaction layer
is responsible for converting high-level PCIe transactions
issued by the OS or firmware, i.e.,memory, I/O, configuration
and message, into PCIe transaction layer packets (TLP). An
X86 machine hosts a PCIe domain, with the root complex
residing in the north bridge, which connects CPU, memory
and the PCIe network, and implements the transaction layer
protocol. Each PCIe device in a PCIe domain is uniquely
identified by a bus/device/function ID, and is given a set
of configuration space registers (CSR), which are partitioned
into a standardized part (such as device/vendor ID, command,
base address register or BAR, etc.) and a device-specific part.
A PCIe device occupying a PCIe slot functions as one or
multiple physical functions (PF), each acting like a logical
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Figure 1: (a) A PCIe domain consists ofmultiple PCIe switches, eachwith oneUp (upstream) port andmultipleDown (downstream)
ports, and end-points in a PCIe domain form a tree, with its root being the domain’s root complex. (b) A non-transparent bridge
(NTB) connects two PCIe domains, where each domain has its own independent address space and is able to access the other
domain’s resources through the NTB’s address translation facility.

PCIe device with its own device ID and CSR. The PCI-SIG
standard on single-root I/O virtualization (SRIOV) [6] virtu-
alizes a PCIe device into multiple virtual PCIe devices. SRIOV
distinguishes between a physical function (PF) and a virtual
function (VF). A PF is a full-function PCI device with its ID
and complete CSR, whereas a VF is a lighter-weight PCIe
device that comes with its ID but without a complete CSR.
Although PCIe was originally designed to be a system

backplane, it has now evolved to be able to scale to a large
number of endpoints and PCIe switches, as shown in Fig-
ure 1(a). Two types of devices exist in a PCIe domain’s tree:
the Type 0 endpoint and Type 1 transparent bridge (TB).
When a system boots up, the BIOS or the OS’s PCIe driver
constructs a PCIe domain’s tree by relying on the root com-
plex to recursively scan and enumerate each PCIe device in
a level-by-level fashion.

3.2 Address-Based Routing
Every operation in a PCIe domain is expressed in terms of
a memory read or write operation with a target address,
which is translated into a PCIe network packet (TLP) that
is then routed to the PCIe endpoint whose BAR covers the
target address. More concretely, every end-point in a PCIe
domain is responsible for a specific range of the domain’s
physical memory address space, which consists of the end
point’s configuration space and the memory address ranges
specified in its BARs, as shown in Figure 1(b).
A PCIe switch consists of a set of Type 1 PCI-to-PCI

bridges, which are shown in Figure 1(a) as the Up (or up-
stream) port and Down (or downstream) ports. The memory
address range of an upstream port should cover the union of
the memory address ranges associated with its downstream

ports. In turn, each downstream port of a PCIe switch con-
sists of a base and a limit register, which specifies a memory
address range that covers the union of the address ranges
associated with the devices reachable via that downstream
port. Packets are routed within a PCIe switch by matching
their target device’s address with the memory address range
of each switch port. The single-tree PCIe topology guaran-
tees there is only one path between any two end-points in
the tree, and the strictly hierarchical routing makes it diffi-
cult to change the bridges’ routing table entries dynamically
upon any failure, because changing one routing entry at a
downstream port implies possibly changing all switches and
endpoints in its subtree.
For example, in Figure 1 (b), the BIOS first probes possi-

ble PCIe end-points, then assigns physical address ranges to
BARs of discovered endpoints (EP1 to EP4), and finally config-
ures the routing table entries of each intermediate bridge, by
ensuring that the base/limit register of each bridge’s down-
stream port covers the physical address ranges of all the
end-points reachable through that port. Specifically, the PCIe
Switch2 has one upstream port and two downstream ports
pointing down and right. For a memory access with a tar-
get address of 0xB0040, the root complex first routes the
associated TLP to the right port toward PCIe Sw2, since its
base/limit registers are 0x90000 - 0xF0000, which covers
0xB0040. Because the downstream port connecting EP2 cov-
ers the address range 0xA0000 to 0xF0000, the TLP is then
routed to the EP2 and eventually to EP2’s BAR1.

3.3 Non-Transparent Bridge
In the PCIe architecture, at any point in time every PCIe
domain has exactly one active root complex. Therefore, in
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theory, no two servers each with their own CPUs are al-
lowed to co-exist in the same PCIe domain. Non-transparent
bridge (NTB), which is a part of the PCI-SIG standard, is de-
signed to enable two or more PCIe domains to inter-operate
together as if they are in a single domain, and thus makes a
key building block for Ladon. Conceptually, an NTB is like
a layer-3 router in data networking, and isolates the PCIe
domains it connects so that the invariant that each PCIe
domain has exactly one root complex always holds. A two-
port NTB represents two PCIe end-points, each of which
belongs to one of the two PCIe domains it adjoins. These
two end-points each expose a Type 0 header type in the
CSR and thus are discovered and enumerated by the root
complex of their respective PCIe domain in the same way
as an ordinary PCIe end-point. However, an NTB provides
additional memory address translation, device ID translation
and messaging facilities that allow the two PCIe domains
to work together while keeping them logically isolate from
each other. More generally, a PCIe switch with X NTB ports
and Y TB ports allows the PCIe domain in which the Y TB
ports participates, called the master domain, to work with X
other PCIe domains, each of which is a slave domain and is
reachable via an NTB port. The side of an NTB port that is
connected to a slave domain is the virtual side, whereas the
other side is called the link side.

The magic of an NTB lies in its ability to accept a memory
read/write operation initiated from one source PCIe domain,
translate its target address, and then deliver and execute it
in another PCIe domain. From the initiating domain’s stand-
point, the memory read/write operation is logically executed
locally within its domain, although physically it is executed
in a remote domain. As mentioned earlier, every PCIe end-
point is equipped with a set of BARs that specify the portions
of the physical memory address space of the end-point’s PCIe
domain for which it is responsible. That is, all memory read
and write operations in a PCIe domain that target at the
memory address ranges associated with a PCIe end-point’s
BARs are delivered to that end-point. An NTB port associates
with every BAR on the link (virtual) side a memory transla-
tion register, which converts a received memory address at
the link (virtual) side into another memory address at the
virtual (link) side. The side of an NTB port providing the
BAR is the main side whereas the other side is the support
side. For example in Figure 1(b), two servers each with its
own PCIe domain are connected together using a two-port
NTB. Assuming the NTB’s left-hand port is configured to
translate the physical address 0x90000 on its link side to the
physical address 0x0 on its virtual side by writing 0x90000
to a link-side BAR and 0x0 to this BAR’s memory transla-
tion register. In this case, the link side is the main side and
the virtual side is the support side. A memory read/write
initiated from the left-hand-side server targeting address

0x90000 will arrive at the BAR of this NTB’s left-hand port,
get translated to physical address 0x0 in the right-hand size
PCIe domain, and eventually arrive at the main memory of
the right-hand side server.
Note that address translation in NTB is uni-directional:

only a memory read/write operation that hits a BAR at the
main side is translated and relayed to the support side, but
not vice versa. Using the same example, a write operation
against the address 0x90000 at the link side is translated and
relayed as a write operation against the address 0x0 at the
virtual side, but a write operation against the address 0x0 at
the virtual side is serviced locally and does not automatically
get translated and relayed to the link side.

3.4 I/O MMU
IOMMUprotects the physical memory space of a physical ma-
chine or host from unauthorized DMA transactions initiated
by I/O devices by creating another level of address trans-
lation: from device virtual address space to physical memory
address space. An IOMMU maintains a Translation Control
Entry (TCE) table for device virtual addresses that are used as
operands of DMA operations. Each TCE entry corresponds
to a 4KB physical memory page in the host and contains
associated access control bits. When a DMA operation from
an I/O device hits the IOMMU, IOMMU searches the TCE
using the source device ID and the operation’s target device
virtual address, converts the target device virtual address
into the corresponding physical memory address if there is
a matched TCE entry and the DMA operation is compatible
with the matched TCE entry’s access control bits, and denies
the DMA operation otherwise.

4 LADON ARCHITECTURE
4.1 Architectural Overview
As shown in Figure 2, the key building block of the proposed
PCIe-based multi-host rack-area network architecture is a
hybrid top-of-rack (TOR) switch that consists of PCIe ports
and Ethernet ports. Every machine or compute host (CH)
in a rack is connected to two ports of this Ladon switch
through two independent PCIe extender cards and two PCIe
cables, and communicates with other CHs in the rack directly
over PCIe and with machines outside the rack through the
Ethernet ports of the TOR switch. Physically, a Ladon switch
consists of a management host (MH), a standard PCIe switch
with TB and NTB ports, and multiple Ethernet NICs each of
which is connected to a TB port of the PCIe switch. The MH
is connected to the Ladon switch through an upstream port,
and serves as the root complex of the PCIe domain to which
the PCIe switch and Ethernet NICs belongs. To address the
concern thatMH is a single point of failure, Ladon sets up two
management hosts, one serving as the master management
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Figure 2: The key building block of the proposed PCIe-based
intra-rack network architecture is a hybrid top-of-rack switch
that consists of PCIe ports and Ethernet ports. Each compute
host (CH) is connected via two distinct NTB ports to the cen-
tral PCIe switch, which could be built from multiple PCIe
switch chips. A redundant backup management host (BMH)
is passively monitoring the liveliness of the master manage-
ment host (MMH). Two Ethernet NICs are attached to the PCIe
switch to support inter-rack communication.

host (MMH) and the other as the backup management host
(BMH). The MMH and BMH are connected with a point-to-
point Ethernet link, which carries PCIe state synchronization
and heartbeats.
Every host connected to a Ladon rack, including the MH

and CHs, has a physical memory space, which in turn com-
prises a local memory subspace and non-local memory sub-
space. A host’s main memory and MMIO devices are mapped
to its local memory subspace. TheMH of a Ladon switchmaps
the local memory subspace of every attached machine to
its non-local memory subspace, and in turn every attached
machine maps the mapped portion of the MH’s physical
memory space to its non-local memory subspace. The MH’s
physical memory space thus serves as the system’s global
memory space. For example, assume every machine in the
rack including the MH has a 32GB local memory subspace.
The MH first maps the i-th attached machine’s local memory
subspace to the range [32GB+(i−1)∗32GB, 32GB+i ∗32GB)
of its non-local memory space, as shown in Figure 3(a). Then
each attached machine maps the active portion of the MH’s
physical memory space to its non-local memory subspace,
which is above 32GB, as shown in Figure 3(b). With this
set-up, an attached machine could access the i-th attached
machine’s local memory subspace by reading or writing the
[64GB + (i − 1) ∗ 32GB, 64GB + i ∗ 32GB) range of its physical
memory space. In other words, an attached machine could
access its local memory resources either directly through

a range in its local memory subspace (below 32GB), or in-
directly through a range in its non-local memory subspace
(above 64GB). Suppose there are 50 machines attached to a
Ladon switch, including the MH. Then every attached ma-
chine could see a 1600GB worth of physical memory, with
32GB local in its own machine (zero hop), 32GB in the MH
(one hop) and 1536GB in other attached machines (two hops).
Consequently, a Ladon switch ties together the local mem-
ory spaces of all the machines attached to it into a global
memory pool. The physical memory addresses in modern
64-bit X86 servers are at least 48 bits long, which is sufficient
to support a global memory pool of up to 256TB.

Because every machine connected to a Ladon switch could
potentially access each physical memory page of every other
machine attached to that switch, data security and safety
becomes a critical issue. More specifically, Ladon must guar-
antee that a machine be able to access a remote physical
memory page in the global memory pool only when it is
explicitly allowed to. Ladon leverages IOMMU [8, 14, 29] to
provide this security guarantee. Every machine attached to
a Ladon switch, including the MH, is assigned a unique PCIe
device ID in the MH’s PCIe domain, which remains unique
after device ID translation across an NTB port. Therefore,
the target address of a PCIe operation from Machine A to
Machine C is matched against a different IOMMU mapping
table in Machine C than that used for a PCIe operation from
Machine B to Machine C . To open up a physical memory
page P in Machine C only to Machine B, Ladon places an
entry for P in Machine C’s IOMMU mapping table for Ma-
chine B, so that memory accesses to P from Machine B could
match an entry in this IOMMU mapping table. The above
design not only opens up the page P to Machine B, but also
restricts P ’s accessibility to Machine B only, because no other
IOMMU mapping tables in Machine C contain an entry for
Page P . To prevent Machine B from accessing the page P ,
Ladon simply removes the entry corresponding to P from
Machine C’s IOMMU mapping table for Machine B.

4.2 Data Plane Fault Tolerance
The MH’s physical memory space is split into two halves
called PMS1 and PMS2, each of which contains a local mem-
ory subspace and a non-local memory subspace. To survive
a PCIe link/port failure, Ladon connects each CH to the TOR
switch through a primary NTB and a secondary NTB, and
maps each CH’s local memory subspace to two distinct mem-
ory address ranges in MH’s physical memory space, one
in PMS1 and the other in PMS2. The example in Figure 3
assumes that each CH needs a 32GB local memory subspace
for its main memory and memory mapped I/O (MMIO) de-
vices. Ladon maps the i-th CH’s local memory subspace to
the MH’s PMS1 ([0, 1TB)) via the CH’s primary NTB port
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Figure 3: Construction of Ladon’s global memory address space requires two address translations; one set up by the MH to map
the local memory subspace of every attached machine to the MH’s physical memory space, as shown in (a), and the other set
up by each attached machine to map the MH’s physical memory space into its own physical memory space, as shown in (b).
To support fault tolerance, the MH maps each attached machine’s local memory subspace to two independent regions in MH’s
physical memory space, thus offering two independent paths to reach each attached machine’s local memory subspace.

and to the MH’s PMS2 ([1TB, 2TB)) via the CH’s secondary
NTB port, as shown in Figure 3 (a). Then the i-th CH maps
the MH’s PMS1 to the lower half of its non-local memory
subspace via its primary NTB port, and the MH’s PMS2 to
the upper half of its non-local memory subspace via its sec-
ondary NTB port, as shown in Figure 3 (b). Consequently,
the i-th CH’s local memory subspace is mapped to and thus
accessible via two distinct physical address ranges in the
global memory pool, [32GB+ (i −1) ∗32GB, 32GB+ i ∗32GB)
via the CH’s primary NTB port, and [1TB + 32GB + (i − 1) ∗
32GB, 1T + 32GB + i ∗ 32GB) via the CH’s secondary NTB
port.
With this set-up, the MH or a CH could access the i-

th CH’s local memory subspace using two independent
paths, one through the i-th CH’s primary NTB port, and
the other through the i-th CH’s secondary NTB port. For
example, a memory request from CH1 reading or writing
the [96GB, 128GB) range of its physical memory space goes
through CH2’s primary NTB port to reach CH2’s local mem-
ory subspace, whereas a memory request from CH1 reading
or writing the [1T + 96GB, 1T + 128GB) range of its physical
memory space reaches the same local memory subspace of
CH2 through CH2’s secondary NTB port.
Even though every CH occupies two physical address

ranges in the global memory pool managed by the MH, at
any point in time, only one of the two physical address ranges
is active and therefore one of the two NTBs is used. With
this set-up, whenever a link/port failure occurs that affects
an CH, say X, the PCIe Advanced Error Reporting (AER)

driver [30] at X is invoked, and it triggers the following
fail-over procedure:

(1) Reports the detected error to the MH,
(2) Asks the MH to tell all other CHs to use X’s secondary

address range to reach X from now on, and
(3) Asks the MH to modify its IOMMU so as to ensure

that the MH’s local DMA operations destined to X also
switch to X’s secondary address range.

Each CH maintains a list of physical memory address
ranges it uses to access a remote CH’s resources, including
main memory and MMIO devices. When a CH receives a
PCIe fail-over notification about an affected CH, the CH
modifies its list to indicate that it should reach the affected
CH through the affected CH’s secondary address range. For
example, upon receiving a PCIe fail-over notification about
CH1, CH2 changes its view of CH1 from [64G, 96G) to [1T +
64G, 1T + 96GB). A memory access to 1T + 64G in CH2
is translated to a memory access to 1T + 32G in MH and
eventually hits the secondary NTB port of CH1 in the MH’s
domain.

Similarly, the MHmaintains a similar list of physical mem-
ory addresses for target CHs of DMA operations initiated by
I/O devices residing in the MH’s PCIe domain. When a CH
is in error, the MH modifies its IOMMU entries to redirect its
DMA operations previously destined to the primary address
range of the in-error CH to its secondary address range.

The above data plane fault tolerance design only handles
link/port failures that affect individual attached CHs, but
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cannot deal with entire PCIe switch failures or inter-switch
link failures, which are left for future work.

4.3 Control Plane Fault Tolerance

4.3.1 Control Migration between Management Hosts

The management host (MH) of a Ladon switch is respon-
sible for the mapping of the attached CHs’ physical memory
spaces into its physical memory space, and for exposing its
physical memory space, including the address range associ-
ated with its PCIe devices, e.g. NICs, to the attached CHs in a
secure way. After address allocation of each PCIe device, the
MH configures the routing table of each PCIe bridge in the
hierarchical routing tree, so that PCIe packets could be for-
warded accordingly. Once the MH completes this set-up, its
role becomes visible only when there is a change in its PCIe
domain, i.e., addition or deletion of PCIe end-points. Most
notably, the MH is not involved at all in the peer-to-peer
data transfers among the PCIe end-points. In fact, when the
MH dies, as long as the routing states in P2P bridges remain,
the PCIe end-points could continue to exchange data with
one another without any pauses. So when the MH fails, it
is neither necessary nor desirable to recover from such a
failure immediately, especially because the current recovery
procedure for a MH failure requires a system-wide restart
of all PCIe end points, which in turn may trigger at least
a device driver reset and possibly a system reboot on the
attached CHs. This subsection describes a seamless control
plane fail-over mechanism that enables the data plane to
continue operating without any disruption when the MH
fails and recovers.
To achieve seamless fail-over across a MH failure, Ladon

sets up two management hosts, one serving as the master
management host (MMH) and the other as the backup man-
agement host (BMH). The MMH and BMH are connected
with a point-to-point Ethernet link, which carries PCIe state
synchronization and heartbeats. In addition, the MMH syn-
chronously replicates modifications to the following states
to the BMH over the dedicated Ethernet link:

• Results of initial PCIe device scanning and enumera-
tion, including assignments of physical address ranges,
interrupt numbers, etc.,

• Contents of the BARs, translation registers, device ID
translation tables, IOMMUs of the NTB ports,

• Allocation of virtual functions (VFs) of PCIe devices
supporting single-root IO Virtualization (SRIOV) to
attached machines, and

• Internal states of the PCIe device drivers in its domain.
Modern PCIe switch chips, including the PCIe switch used

in this project, support a capability to partition a physical

Figure 4: Timeline of Ladon’s control plane fail-over mech-
anism, including the kernel images created and used by the
MMH and BMH, and association of PCIe devices with VS1
and VS2 (shaded parts). The MMH is originally the master,
then, upon detecting the MMH crashes, the BBH becomes the
new master by rebooting itself with a kernel image that cap-
tures the initial PCIe device driver states and then augmenting
it with subsequent PCIe device changes transferred from the
MMH.

switch into multiple virtual switches [21] that work inde-
pendently. Ladon takes advantage of this flexibility by parti-
tioning the root PCIe switch to which MMH and BMH are
connected into two virtual switches, VS1 and VS2, with the
MMH connected to the upstream port of VS1 and the BMH
connected to the upstream port of VS2. VS1 connects MMH
with all other PCIe devices, whereas VS2 has only BMH con-
nected to it. When the MMH dies, the BMH detects it via the
heartbeat mechanism and takes over by re-assigning all PCIe
devices except theMMH fromVS1 to VS2. The re-assignment
allows VS2 to form a new PCIe hierarchy, with the BMH as
the root and all other PCIe devices in the downstream. The
key property of this port re-assignment operation is that the
routing states of the PCIe bridges do not change when the PCIe
devices are switched from VS1 to VS2. In fact, only the highest
level bridge needs to change its upstream port to connect to
the BMH. Because PCIe bridge’s routing state only contains
a contiguous address range that covers its downstream ports,
and any packet with a target address falling within a PCIe
port’s address range will be forwarded to that port, changing
a PCIe switch’s upstream port has no impact on the peer-
to-peer communication between PCIe end points attached
to the switch. Moreover, because the BMH has exactly the
same PCIe-related states as the MMH, it could immediately
resume the control plane service, which processes events
such as when PCIe devices are added or deleted or when
PCIe resources are allocated or freed.

4.3.2 Capturing of PCIe Device Driver States

Among the states maintained by a management host, the
internal states of PCIe device drivers, for example, NIC or
RAID drivers, are the most difficult if not impossible to cap-
ture, especially for closed-source drivers [25]. To overcome
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this implementation challenge, Ladon leverages Linux’s sus-
pend/resume [3, 15] facility, in which when the suspend
operation is invoked, the entire system state including the
drivers’ states, are snapshotted and saved to the disk.

Specifically, both the MMH and BMH have three disk par-
titions that hold three different kernel images: the controller
kernel image, the template kernel image, and the running ker-
nel image. The controller kernel is used to boot up a man-
agement host so as to manage the other two kernel images.
The template kernel is used to hold a golden kernel image
to be reused after a failure, and is created from a suspend
operation of the system after all PCIe device drivers are ini-
tialized. The running kernel is the kernel MMH and BMH
runs to perform management host functions.

As shown in Figure 4, initially all PCIe devices except the
MMH are connected to VS2, and the BMH boots up from the
controller kernel image until all of its PCIe device drivers
are initialized. Then the BMH suspends itself to form the
template kernel image, reboots itself from the controller im-
age, and then copies the template image to form the running
image. Finally the BMH is again rebooted from the controller
image, and, from this point on, monitors the health of MMH
using heartbeat messages.

Next, all PCIe devices except the BMH are re-assigned to
VS1, and the MMH boots up from the controller image and
continues to run until all of its PCIe device drivers are ini-
tialized. Then the MMH suspends itself to form the template
image, reboots itself again from the controller image, and
then copies the template image to form the running image.
Finally the MMH reboots itself once more, this time from
the running image, and gets the whole system going.
When the BMH detects that the MMH encounters an ir-

recoverable error, the BMH instructs all other members of
VS1 except the MMH to join VS2, and reboots itself using
the running image. Because the BMH’s running image con-
tains all the necessary PCIe device driver states, the BMH
is able to manage the PCIe devices and NTBs in VS2’s PCIe
domainwithout resetting them. Note that the BMHmust reas-
sign members of VS1 to VS2 before rebooting itself, because
otherwise the reboot may fail as the device drivers in the
running kernel image could not find their corresponding
devices. The control plane’s service is disrupted during the
time only when the BMH is rebooted.
The suspend/resume-based approach is simple to imple-

ment because it does not require understanding of or modifi-
cations to PCIe device drivers. However, it is limited in that it
cannot accommodate any run-time changes to PCIe devices
or PCIe resource allocation after the initial snapshots were
taken. To account for these changes, the MMH must log and
transfer them via the dedicated Ethernet link to BMH at run
time, and the BMH replays them after rebooting itself using
the running kernel image during the take-over process.

Figure 5: The Ladon testbed is a rack (left) consisting of five
1U X86 servers, one dual-port SRIOV 10GE NIC, and multiple
PCIe switches. CHs are connected through external PCIe cables
to the NTB ports of the TOR PCIe switch (left top and bottom).

5 EVALUATION
5.1 Prototype Implementation
The hardware test-bed in the Ladon prototype consists of
five Intel X86 servers, one 10GE NIC, eight PLX PEX8732
switches, two PLX PEX8717 switches supporting non-
transparent ports, and one PLX PEX8748 PCIe switch. Two
servers serve as the master and backup management host,
the other two servers serve as compute hosts, and the fifth
server is a remote server that is connected with the TOR
switch through a 10GE link. Each of these servers is a Super-
micro 1U server equipped with an 8-core Intel Xeon 3.4GHz
CPU and 8GB of memory. These two compute hosts run
KVM with the Intel VT-d support enabled so that multiple
virtual machines could run on them. The PEX8748 switch
is partitioned into two virtual switches, VS1 and VS2. The
master management host (MMH) is connected to the VS1’s
upstream port of the PEX8748 PCIe switch through a PCIe
adaptor plugged into the host’s x4 PCIe slot, while the backup
management host (BMH) is connected to the VS2’s upstream
port using the same set-up.
The PEX8717 device is a 16-lane 10-port switch that sup-

ports up to 2 NTB ports and four DMA channels for peer-to-
peer data transfers. In addition, an Intel 82599 SRIOV 10GE
NIC serves as the out-of-rack Ethernet adapter, is plugged
into a downstream TB port of the PCIe switch, and is con-
nected to another Intel 82599 SRIOV 10GE NIC on the fifth
server using a duplex fiber optic cable.
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Figure 6: The observed inter-packet arrival time of a UDP
connection between a test sender and a test receiver, which are
connected through a PCIe switch and a 10GE link. Between the
time when the MMH fails and the time when the BMH takes
over, there is no packet loss and the variations in the inter-
packet arrival times observed at the receiver are negligible.

The PEX8748 PCIe switch is a 48-lane, 12-port PCIe Gen3
switch, where each lane provides 8Gbits/s raw transfer band-
width. We assigned 4 lanes of this PCIe switch to the man-
agement host, 4 lanes to each of the two compute hosts, and
another 4 lanes to the Intel 82599 NIC. The NIC and the two
compute hosts are connected to ports that are assigned to
VS1. Because the master management host is connected to
VS1’s upstream port, the VFs and PF on the Intel NIC are
under the control of the master management host
The Ladon prototype implementation is based on Fedora

15 with the Linux kernel version 2.6.38, and consists of a
management host component and a compute host compo-
nent. The management host enumerates all the PCIe devices
in its domain, including non-transparent PCIe switches and
Ethernet NICs, sets up the BARs and translation registers on
NTBs, maps compute hosts’ memory and I/O devices to the
management host’s physical memory space, and allocates
and de-allocates virtual PCIe devices to compute hosts for
I/O device sharing. Each CH runs the Intel’s VF Ethernet
driver and an NTB driver, while the MH runs the Intel PF
Ethernet driver and also the NTB driver, controlling all the
NTB device at side of the PCIe switch. Ladon implements its
failover mechanism as a registered handler function of both
the NTB driver and Ethernet driver at each CH and the MH.

5.2 Fail-over Latency for a Management
Host Failure

To assess the performance impact of a management host fail-
ure on network connections that traverse the Ladon hybrid
switch, we used one of the compute hosts in the test-bed
as the test sender and a server outside the rack as the test
receiver, and programmed the test sender to send a sequence
of 64-byte UDP packets continuously once every msec for

Step Time (sec)
MMH Failure Detection 0.25

Switch Port Reassignment 0.001
BMH Reboot 38.1

Total 38.35

Table 1: Detailed delay breakdown of the fail-over process for
a management host failure, in which the BMH takes over the
control from the MMH

a period of time. During this period, we manually crashed
the master MH and triggered the control plane fail-over
mechanism in the backup MH, which re-assigned attach-
ment compute hosts and the 10GE NIC from VS1 to VS2 and
initiated a reboot of itself before eventually taking over the
control plane, and measured the packet loss rate at the test
receiver. We ran the above experiment five times, and found
no packet loss during the entire experiment period.

Suspecting that a PCIe switch may buffer PCIe packets to
survive the management host failure, we also measured the
inter-packet arrival time at the receiver. Figure 6 shows that
the observed inter-packet arrival time remains flat through-
out the entire experiment period for each of the five runs.
That is, not only the transition from the master MH to the
backup MH loses zero packet, it does not even have any
impact on the test network connection’s performance. We
have repeated the same tests for UDP connections between
servers that are both attached to the PCIe switch, and ob-
tained identical results. These results convincingly demon-
strate the clean isolation between Ladon’s control plane and
data plane, to the extent that the data plane’s functionality
and performance are completely insulated from such major
control plane breakdowns as a management host failure.

Even though the above result demonstrates that a manage-
ment host failure and fail-over has zero impact on the data
plane, a management host failure does disrupt the services
provided by Ladon’s control plane, such as addition or dele-
tion of PCIe devices, or allocation of PCIe device resources
to compute hosts. As shown in Table 1, after detecting the
failure of the master management host using the heartbeat
mechanism, which takes on average 0.25 second when the
heartbeat timer is set to 0.1 second, the BMH takes over the
PCIe domain by first reassigning all ports except the port
assigned to the MMH from VS1 to VS2, and then rebooting
itself from the running kernel image. The BMH re-assigns
ports by programming a set of special registers on the root
PCIe switch chip, which takes less than 1 millisecond. Re-
booting the BMH to the point of fully resuming control plane
service takes on average 38.1 seconds. Therefore, the total
service disruption time to Ladon’s control plane due to a
management host failure is around 38.35 seconds.
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Step Time (µsec)
Link Failure Detection 2.4
Failure Determination 8.5

Route Change Notification and Processing 76
Total 86.9

Table 2: Detailed delay breakdown of the fail-over process for
a link/port failure associated with a compute host

In contrast, without Ladon’s control plane fail-over
scheme, after detecting the MMH fails, the BMH must first
initiate a system-wide shut-down and restart to all CHs, and
then reboots itself to resume the services on the data and
control plane. The entire process takes about 85 seconds.
During this period, the data plane service is unavailable and
no packets can travel on the PCIe network.

5.3 Fail-over Latency for a Link Failure
The current Ladon prototype only handles failures of
links/ports associated with an CH. To efficiently handle PCIe
link/switch failures, Ladon detects occurrences of failures
by leveraging PCIe’s advanced error reporting (AER) [30]
capability, which allows a PCIe component to send an error
reporting message to the root complex. Such error signal-
ing can occur because of a failure of a PCIe link or of a
transaction initiated on a PCIe link. Table 2 shows the delay
breakdown of the fail-over process of such a failure, which
is broken down into the following three components.

Failure Detection: This is the time between when a PCIe
device detects an uncorrectable fatal error and sends an error
message to the root complex and triggers an interrupt, and
when the PCIe AER driver responds to the interrupt. In our
prototype, the link failure detection time is around 2.4 µsec.

Failure Determination: When a CH’s AER driver receives
an AER interrupt, it notifies the MH, which makes a final
verdict on whether it is indeed a data plane failure that de-
serves a fail-over action. In the current Ladon prototype, a
CH’s AER driver notifies the MH by writing to a pre-defined
4-byte memory location, which a thread on the MH polls
constantly and, upon detecting a change, reads it and imme-
diately writes a response into a pre-defined 4-byte location in
the CH. The round-trip delay as measured by a CH’s AER dri-
ver is 17 µsec, which suggests that the one-way notification
delay is 8.5 µsec.

Route Change Notification and Processing: After determin-
ing a fail-over action is justified, the MH notifies all the CHs
about the route change one by one. As a result, the total
notification latency from the MH to all CHs becomes the
number of CHs times 8.5 µsec. As mentioned in Section 4.2,
each CH maintains a list of physical memory addresses it
uses to access a remote CH’s resources, and, upon receiving a

fail-over notification about an in-error CH, modifies this list
to ensure that all subsequent accesses to the in-error CH use
its secondary address range. Modification to this list takes
less than 1 µsec. Because the current prototype could hold
up to 8 CHs, the total notification delay is around 8*(1+8.5)
= 76 µsec.
In summary, the total fail-over latency for a link failure

in the current prototype (up to 8 CHs) is about 86.9 µsec,
the bulk of which is attributed to route change notification.
This route change notification delay could be significantly
reduced if Ladon exploits the multicast capability of modern
PCIe switches, where a memory write operation with a mul-
ticast target address is sent to all PCIe end points that belong
to the corresponding multicast group.

6 CONCLUSION
Because PCI Express’s transceiver is designed for short dis-
tance (less than 10 meters), it is simpler, cheaper, and more
power-efficient, and makes a more cost- and power-efficient
system area network for intra-rack inter-machine communi-
cations than comparable technologies such as 10Gbps Eth-
ernet or Infiniband. Its memory-based addressing model is
especially compelling because it opens up the possibility for
onemachine to directly read or write anymemory location of
another machine without involving the latter’s CPU. Ladon
exploits this direct remote memory access capability to set
up its fail-over mechanisms that ensure continued network
operation in the presence of a control/data plane failure. This
paper presents the design, implementation and evaluation of
a fault-tolerant PCIe-based rack area network architecture
that takes effective advantage of PCIe architectural features
to significantly reduce the service disruption time due to
a failure of a PCIe root complex and a PCIe link/port. The
specific research contributions of this work thus include:

• A fault-tolerant PCIe-based rack-area interconnect ar-
chitecture that connects together a set of compute
hosts and PCIe devices, and allows each compute host’s
resources to be mapped into two distinct memory ad-
dress ranges in a rack-wide global memory space and
thus be accessible via two independent paths, and

• Design of a seamless data plane fail-over mechanism
that detects a PCIe link/port failure and the affected
compute host, notifies the management host, and gets
all other compute hosts to communicate with the af-
fected compute host using its secondary address range
from this point on, and

• Design, implementation and evaluation of a seamless
control plane fail-over mechanism that successfully
prevents a control plane failure from disrupting the
data plane and incurs only a modest service disruption
time on the control plane service.
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