
Efficient Analytics on Encrypted Data
Gidon Gershinsky
IBM Research - Haifa
gidon@il.ibm.com

ABSTRACT
Enterprises and non-profit organizations work with sensitive
commercial or personal information, stored in an encrypted
form due to business confidentiality requirements, GDPR
regulations [4] and other reasons. Unfortunately, a straight-
forward encryption doesn’t work well for modern columnar
data formats, such as Apache Parquet [2], that are leveraged
by analytic frameworks for acceleration of data ingest and
processing.

Parquet is a popular file format, widely used in cloud and
on-premises processing of data by Apache Spark [3], Impala
[1] and other systems. Besides column-oriented information
storage, Parquet enables efficient data encoding, compression
and fast access to field values by use of multi-level internal
indexing and statistics. The latter capability is critical for
a so-called predicate push-down, where an analytic frame-
work fetches and processes only a subset of the full data
set, after analyzing Parquet metadata that narrows down the
files and data pages relevant for a given query (predicate).
Combined with column filtering, this allows to accelerate
analytic workloads by order(s) or magnitude. However, if
Parquet files are bulk-encrypted in storage, their internal
modules can not be extracted and parsed. All files in a re-
quested folder must be fully delivered from storage to the
analytic framework location, decrypted and authenticated
there, and then processed. Another alternative is to decrypt
the files at the storage upon a read request - however, this
makes the encryption keys and the data visible to the stor-
age system and administration. Also, this still requires full
decryption of every file in a folder, before the parsing be-
comes possible. A third option is to use an encryption client
in storage SDKs, available in some clouds. But these clients
don’t support authentication encryption for range reads, re-
quired for predicate push-down, and make the solution tied

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SYSTOR ’18, June 4–7, 2018, HAIFA, Israel
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5849-1/18/06. . . $15.00
https://doi.org/10.1145/3211890.3211907

to a specific cloud storage, inapplicable in other clouds or
on-premises data centers.
We are working on a Parquet modular encryption mech-

anism [5] that supports authenticated data encryption and
efficient filtering in any storage, without revealing the encryp-
tion key or the data to the storage system. The mechanism
preserves the Parquet encoding, compression, columnar pro-
jection and indexing capabilities. It uses the internal modular
structure of the format for a separate encryption of all data
and metadata components, while updating the module ref-
erences as required by authenticated encryption algorithms
that don’t preserve the data length. Authentication support
allows a reader to make sure a file has not been tampered
with or replaced with an old version. We work with the
Apache Parquet community to contribute this mechanism
to the open source project. Initially, the mechanism will en-
able a single encryption key for each file, with a choice of
columns to be encrypted and columns to be left as plaintext
if they don’t contain any sensitive data. Later, this approach
will be extended to a key-per-column and possibly key-per-
rowgroup encryption. In parallel, we integrate Apache Spark
with the Parquet modular encryption mechanism - to enable
Spark to work directly with encrypted data. The integration
allows for an efficient Spark SQL analytics not only on clear-
text Parquet files, but on encrypted data as well.

CCS CONCEPTS
• Security and privacy → Management and querying
of encrypted data;

KEYWORDS
data encryption, big data analytics

REFERENCES
[1] Apache Software Foundation. 2018. Apache Impala. https://impala.

apache.org/. (2018).
[2] Apache Software Foundation. 2018. Apache Parquet. https://parquet.

apache.org/. (2018).
[3] Apache Spark. 2018. Spark SQL and DataFrames. https://spark.apache.

org/sql/. (2018).
[4] EU. 2018. General Data Protection Regulation. https://gdpr-info.eu/.

(2018).
[5] Gidon Gershinsky. 2018. Parquet Modular Encryption Jira. https:

//issues.apache.org/jira/browse/PARQUET-1178. (2018).

121

https://doi.org/10.1145/3211890.3211907
https://impala.apache.org/
https://impala.apache.org/
https://parquet.apache.org/
https://parquet.apache.org/
https://spark.apache.org/sql/
https://spark.apache.org/sql/
https://gdpr-info.eu/
https://issues.apache.org/jira/browse/PARQUET-1178
https://issues.apache.org/jira/browse/PARQUET-1178

	Abstract
	References

