CLOCK-Pro+: Improving CLOCK-Pro Cache Replacement with Utility-Driven Adaptation

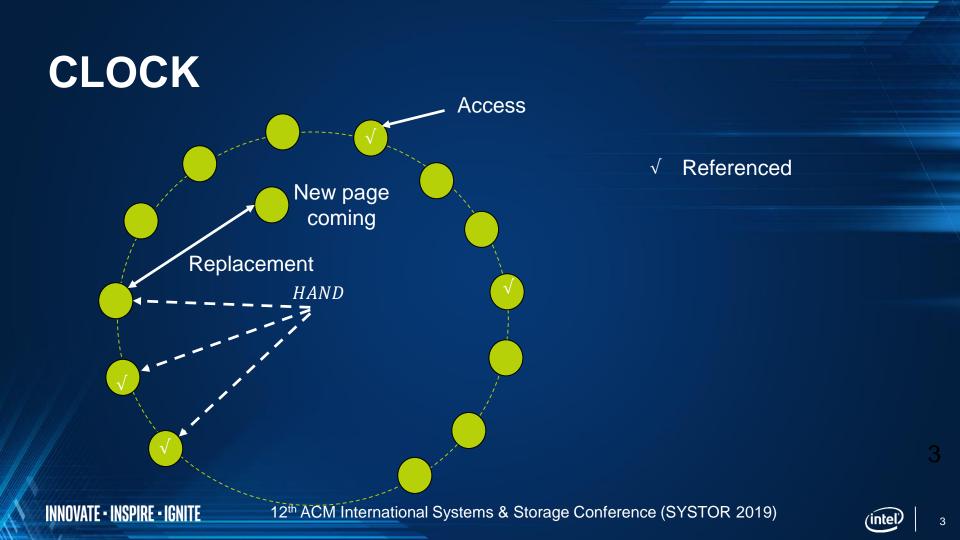
Cong Li, Intel Corporation

INNOVATE • INSPIRE • IGNITE 12th ACM International Systems & Storage Conference (SYSTOR 2019)

Outline

- Introduction: Cache & Page Replacement
- Background: CLOCK-Pro & CLOCK for Adaptive Replacement
- The New Policy w/ Utility-Driven Adaptation: CLOCK-Pro+
- Experimental Results
- Conclusion

Introduction

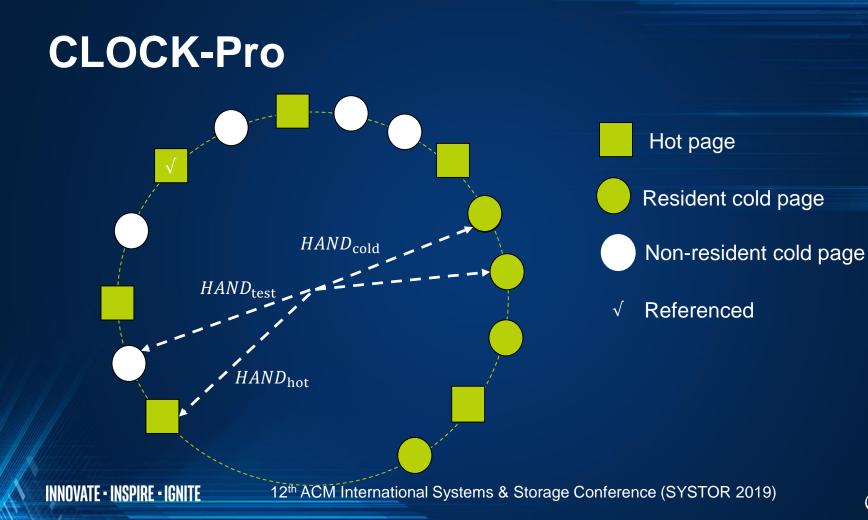

Buffer Cache Replacement

- Determine the victim to be replaced given a new data block to be loaded
- Many policies proposed, e.g., LRU, ARC, LIRS, etc.

• CLOCK

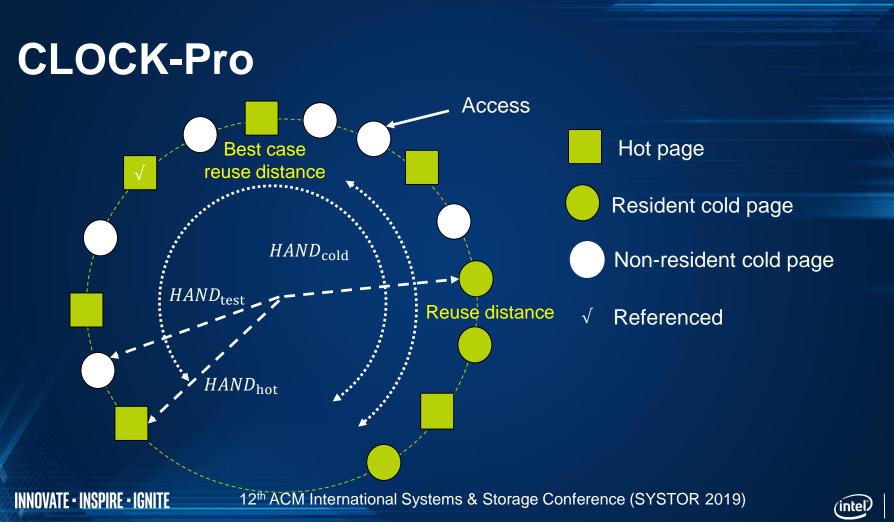
- Data manipulation w/ a hit \rightarrow lock contention problem in low hit latency scenario
 - ✓ Page replacement in virtual memory management

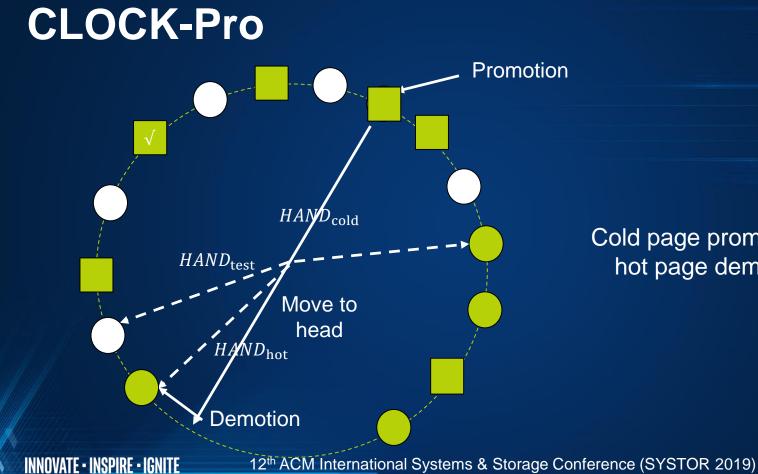
CLOCK-Pro

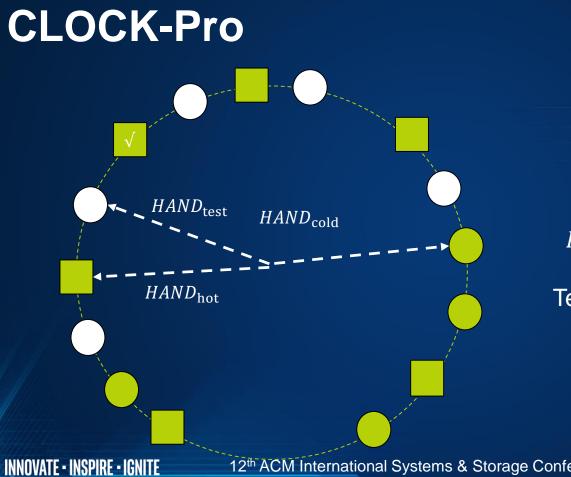

Reuse Distance

- Distance of a referenced page away from the top
- Page w/ a low reuse distance \rightarrow more likely to be accessed in the future

CLOCK-Pro

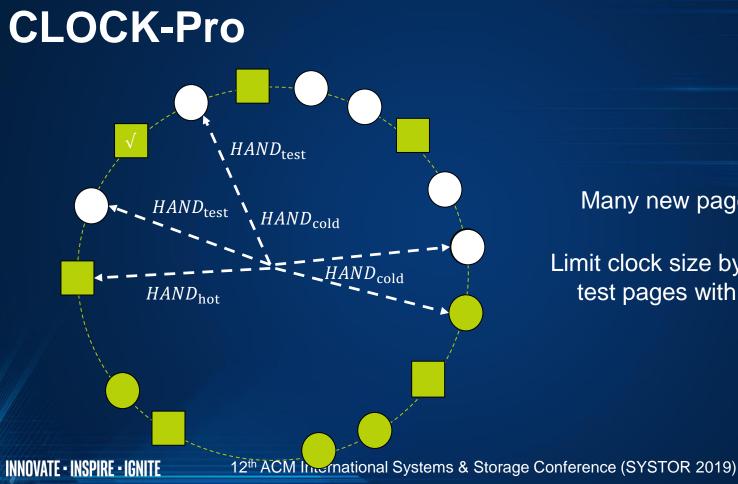

- Efficiently discriminate hot pages (low reuse distances) from cold pages (high reuse distances)
 - Approximating LIRS policy
 - ✓ Adapting to LRU-friendly workloads





J

Cold page promotion & hot page demotion



HAND_{hot} & HAND_{test} move

Test period terminates & nonresident page discarded

12th ACM International Systems & Storage Conference (SYSTOR 2019)

Many new pages come

Limit clock size by terminating test pages with HAND_{test}

Weakness w/o Adaptation

Static Cache Space Allocation

INNOVATE - INSPIRE - IGNITE

- Small number of resident cold pages close to head position
- Non-resident cold pages interleaved w/ hot pages
- When Reuse Distance Is not a Good Predictor (or does not Exist)
 - Frequent accesses to close-to-head non-resident cold pages result in misses
 - ✓ Can be captured with a basic CLOCK policy
 - Example: stack depth distribution (SDD) workload

CLOCK-Pro w/o adaptation is not good enough

12th ACM International Systems & Storage Conference (SYSTOR 2019)

CLOCK-Pro w/ Adaptation

• Idea

- Cold page access \rightarrow LRU friendly
- Test period expiration → need more hot pages to extend test period

Issue

INNOVATE - INSPIRE - IGNITE

- Simple heuristics w/o utility analysis, e.g.,
 - \checkmark Resident cold page accesses \rightarrow not necessary to increase cold page number
 - \checkmark Many test pages expire \rightarrow more hot pages may not help

CLOCK-Pro w/ adaptation is still not good enough

12th ACM International Systems & Storage Conference (SYSTOR 2019)

CLOCK w/ Adaptive Replacement (CAR)

Recency vs. Frequency

- Varying & requiring dynamic adaptation
- CAR (Approximation of ARC)
 - Maintain 2 different CLOCKs & 2 different shadow lists
 - ✓ 1 CLOCK & 1 shadow list for recency (1 recent access)
 - ✓ 1 CLOCK & 1 shadow list for frequency (at least 2 recent accesses)
 - Utility-driven adaptation to dynamically adjust the 2 CLOCKs

INNOVATE - INSPIRE - IGNITE

Frequency pages: pages w/ at Recency pages: pages w/ 1 recent accesses only least 2 recent accesses Recency Frequency CLOCK CLOCK T₂ T_1 С С Recency shadow list B_1 Frequency shadow list B_2

12th ACM International Systems & Storage Conference (SYSTOR 2019)

Recency pages: pages w/ 1 recent accesses only

Recency shadow list B_1

Frequency pages: pages w/ at least 2 recent accesses

Frequency CLOCK T₂

Frequency shadow list B_2

Access recency shadow list \rightarrow growing T_1 Access frequency shadow list \rightarrow growing T_2 Incremental utility quantified as $P_1 = 1/|B_1|$ Incremental utility quantified as $P_2 = 1/|B_2|$ INNOVATE · INSPIRE · IGNITE 12th ACM International Systems & Storage Conference (SYSTOR 2019)

Recency pages: pages w/ 1 recent accesses only

Recency shadow list B_1

Adjustment given a B_1 access: $|T_1| \leftarrow |T_1| + \max\{1, P_1 / P_2\}$

Frequency pages: pages w/ at least 2 recent accesses

Frequency CLOCK T₂

Frequency shadow list B_2

Adjustment given a B_2 access: $|T_2| \leftarrow |T_2| + \max\{1, P_2 / P_1\}$

INNOVATE • INSPIRE • IGNITE

12th ACM International Systems & Storage Conference (SYSTOR 2019)

CAR (cont.)

INNOVATE - INSPIRE - IGNITE

- Frequency CLOCK & Shadow List
 - Contain less granular information
- Without a Fine-Grained Metric like Reuse Distance
 - Less capable in capturing repeated accesses w/ relatively long temporal distances (weak locality)

CAR is not good enough as well

12th ACM International Systems & Storage Conference (SYSTOR 2019)

CLOCK-Pro vs CAR (a Glance)

INNOVATE -

CLOCK-Pro outperforms CAR

	Trace (cache size)	CLOCK-Pro	CAR	
	WebSearch1 (131072)	<u>/</u> 13.10%	8.32% `	
	WebSearch1 (262144)	24.91%	14.90%	
	WebSearch1 (524288)	40.36%	32.78%	
	WebSearch2 (262144)	29.80%	26.94%	CAR
	WebSearch2 (524288)	48.35%	41.72%	outperforms
	WebSearch3 (262144)	29.66%	26.68%	CLOCK-Pro
	WebSearch3 (524288)	` _ 48.21%	41.40%	
	Financial1 (512)	/17.78%	23.17%	
	Financial1 (1024)	20.62%	26.02%	
	Financial1 (2048)	24.16%	29.38%	
	Financial1 (4096)	27.58%	32.61% 🏒	
	Financial1 (8192)	31.31%	35.72%	
	No con	sistent winner		
	SDD (256)	17.10%	20.40%	
- INSPIRE - IGNI	SDD (512)	`\31.60%	36.75%	(intel)

Idea of CLOCK-Pro+

Idea Inspired by CAR

- Dynamic adaptation in CLOCK-Pro using a CAR-style utility evaluation
 - ✓ When reuse distance is a good predictor, more space allocated to hot pages
 - ✓ When reuse distance is not a good predictor, more space allocated to cold pages
- Determining Predictor Goodness
 - Accessing non-resident cold pages
 - Inappropriately demoting hot pages (hit shortly after demotion)

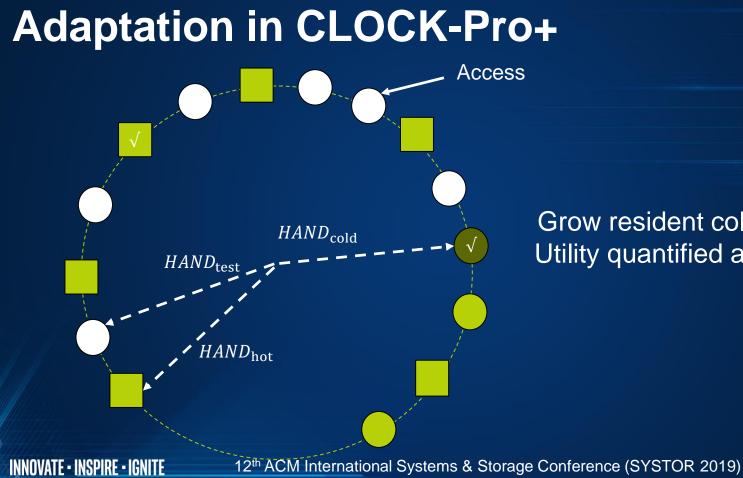
Adaptation in CLOCK-Pro+

HAND

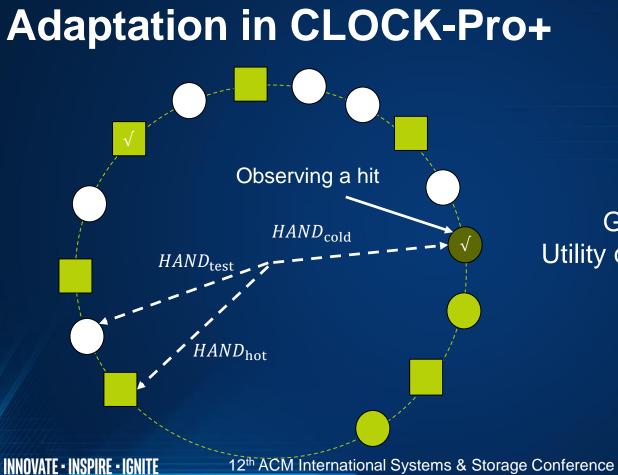
HAND_{test}

INNOVATE - INSPIRE - IGNITE

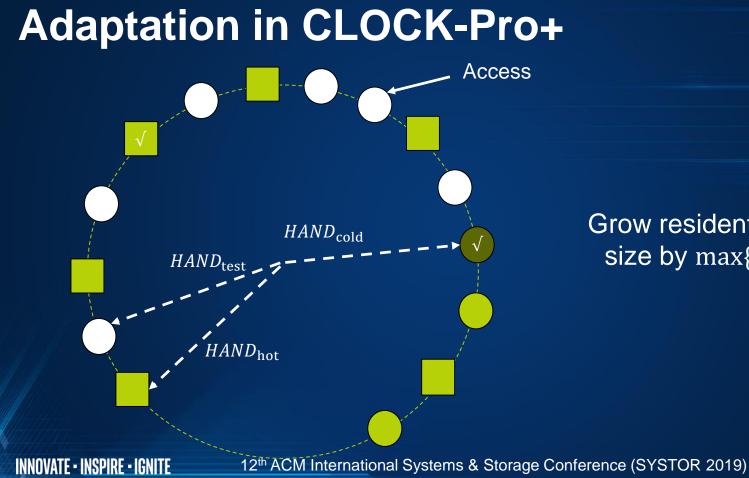
AND_{hot}


Resident cold pages demoted from hot pages

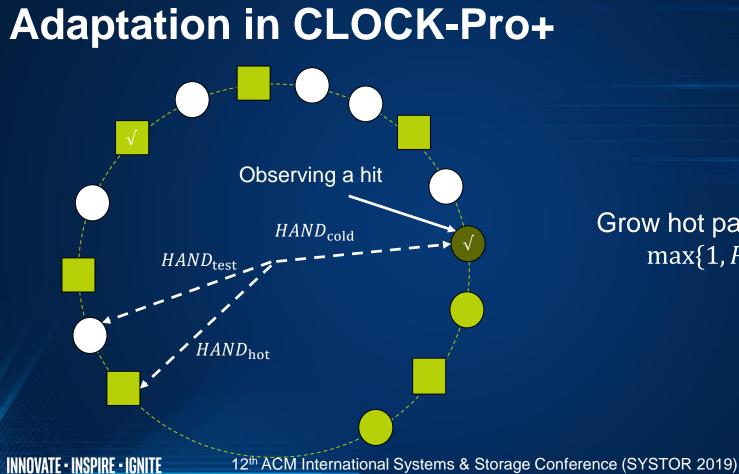
 C_n : current number of nonresident pages


 C_d : current number of resident cold pages demoted from hot pages

12th ACM International Systems & Storage Conference (SYSTOR 2019)



Grow resident cold page size Utility quantified as $P_{\bar{n}} = 1/C_n$



Grow hot page size Utility quantified as $P_{\bar{d}} = 1/C_d$

12th ACM International Systems & Storage Conference (SYSTOR 2019)

Grow resident cold page size by max{1, $P_{\bar{n}}/P_{\bar{d}}$ }

Grow hot page size by $\max\{1, P_{\bar{d}}/P_{\bar{n}}\}$

Experimental settings

Trace-Driven Simulation

- I/O traces from UMass Trace Repository
- Synthetic trace drawn from a stack depth distribution
- Cache size varies, & shadow entry number = cache entry number

Comparative Study on Hit Ratio

- CLOCK-Pro
- CAR
- CLOCK-Pro+

Experimental results

INNOVATE -

Trace (cache size)	CLOCK-Pro	CAR	CLOCK-Pro+
WebSearch1 (131072)	{ 13.10% \	8.32%	12.96%
WebSearch1 (262144)	24.91%	14.90%	24.80%
WebSearch1 (524288)	40.36%	32.78%	41.66%
WebSearch2 (262144)	29.80%	26.94%	29.64%
WebSearch2 (524288)	48.35% ¦	41.72%	48.50%
WebSearch3 (262144)	29.66%	26.68%	29.52%
WebSearch3 (524288)	└<u>48.21%</u>/	41.40%	48.41%
Financial1 (512)	17.78%	23.17%	22.69%
Financial1 (1024)	20.62%	26.02%	25.77%
Financial1 (2048)	24.16%	29.38%	29.15%
Financial1 (4096)	27.58%	32.61%	32.35%
Financial1 (8192)	31.31%	35.72%	35.65%
Financial1 (16384)	34.33%	38.35%	38.31%
SDD (256)	17.10%	20.40%	19.34%
SDD (512)	31.60%	36.75%	35.06%

Retain CLOCK-Pro's

strength

15

ínte

Experimental results Overcome CLOCK-Pro's weaknesses, bringing its performance close to CAR

	Trace (cache size)	CLOCK-Pro		CLOCK-Pro+
	WebSearch1 (131072)	13.10%	8.32%	12.96%
	WebSearch1 (262144)	24.91%	14.90%	24.80%
	WebSearch1 (524288)	40.36%	32.78%	41.66%
	WebSearch2 (262144)	29.80%	26.94%	29.64%
	WebSearch2 (524288)	48.35%	41.72%	48.50%
	WebSearch3 (262144)	29.66%	26.68%	29.52%
	WebSearch3 (524288)	48.21%	41.40%	48.41%
	Financial1 (512)	17.78%	23.17%	(22.69%)
	Financial1 (1024)	20.62%	26.02%	25.77% ¦
	Financial1 (2048)	24.16%	29.38%	29.15%
	Financial1 (4096)	27.58%	32.61%	32.35%
	Financial1 (8192)	31.31%	35.72%	35.65%
	CLOCK-Pro+ performs	s close to the wir	nner betwee	en the two
	SDD (256)	17.10%	20.40%	19.34%
INNOVATE - I	SDD (512)	31.60%	36.75%	35.06%

inte

Conclusion

- Novel Improvement to CLOCK-Pro's Adaptation
 - Borrowing idea from CAR
 - Utility-driven adaptation of cache space allocation

CLOCK-Pro+

- Enjoy the strengths of CLOCK-Pro & CAR
- Overcome the weaknesses of CLOCK-Pro & CAR
- Perform consistently close to the winner between the two

Q & A

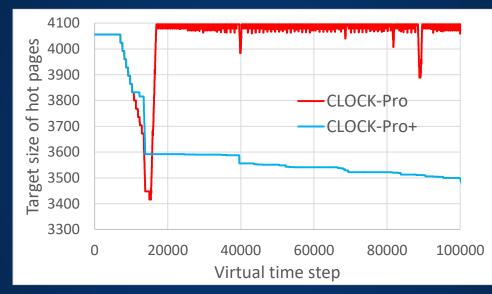
INNOVATE • INSPIRE • IGNITE 12th ACM International Systems & Storage Conference (SYSTOR 2019)

Ablation Study

INNOVATE - INSPIRE - IGNITE

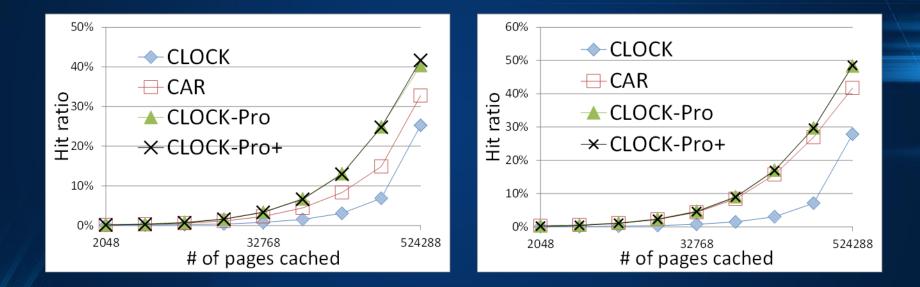
Sometimes CLOCK-Pro improves the performance

Trace (cache size)	CLOCK-LIRS ¹	CLOCK-Pro	CLOCK-Pro+
Financial1 (512)	15.80%	17.78%	(22.69%)
Financial1 (1024)	19.42%	<u> 20.62%</u>	25.77%
Financial1 (2048)	25.36% ¦	24.16%	29.15% ¦
Financial1 (4096)	30.51%	27.58%	32.35%
Financial1 (8192)	¦ 34.24% ¦	31.31%	35.65%
Financial1 (16384)	37.08%	34.33%	38.31%
SDD (256)	17.00%	17.10%ì	19.34%
SDD (512)	30.95%	31.60%	35.06%
SDD (1024)	√_51.55%	58.08%;	ر_58.07%
¹ CLOCK-Pro w/o adaptation Sometimes it does not			


CLOCK-Pro performs unstably but CLOCK-Pro+ performs consistently

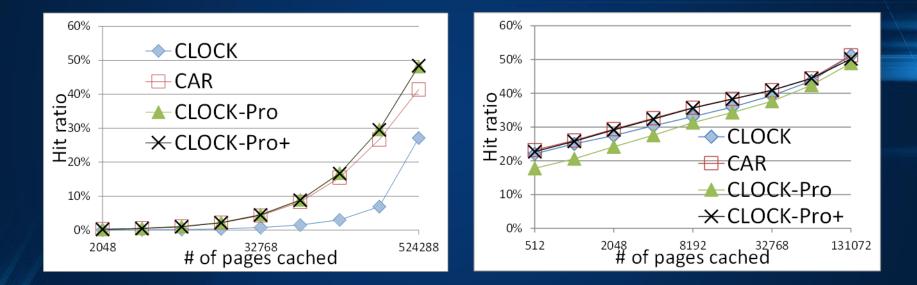
12th ACM International Systems & Storage Conference (SYSTOR 2019)

achaiotanth

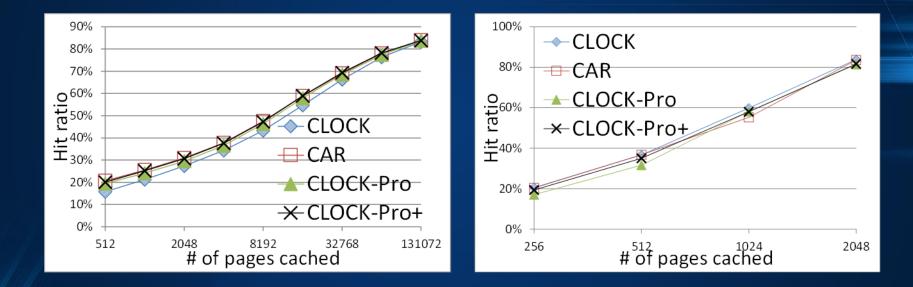


Case Study: Financial1 (4096)

CLOCK-Pro: 382,543 non-resident cold page accesses, 111,244 resident cold page hits tracked, but **3,143,452** test pages expired; CLOCK-Pro+: 102,804 non-resident cold page accesses & 3,780 demoted page hits INNOVATE · INSPIRE · IGNITE 12th ACM International Systems & Storage Conference (SYSTOR 2019)


Full Results: WebSearch1 & Webserach2

INNOVATE • INSPIRE • IGNITE 12th ACM International Systems & Storage Conference (SYSTOR 2019)


Full Results: WebSearch3 & Financial1

INNOVATE - INSPIRE - IGNITE 12th ACM International Systems & Storage Conference (SYSTOR 2019)

Full Results: Financial2 & SDD

INNOVATE - INSPIRE - IGNITE 12th ACM International Systems & Storage Conference (SYSTOR 2019)

