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The Essence of Caching



The Essence of Caching

• A fast but relatively small

memory

• Can temporarily store some

items of the ”real storage”

• Improves performance if

hit-ratio is high
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LRU [5]

Least Recently Used

• Idea: recently requested items probably will be requested again

• Policy: evict the oldest item from the cache

• Simple & efficient

• Easily polluted
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LFU [5]

Least Frequently Used

• Idea: most popular items probably will be requested again

• Policy: evict the item with the lowest access count from cache

• Complex to implement efficiently

• No freshness mechanism
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Problem

• Different workloads have different access patterns:

? Some are recency biased

? Some are frequency biased.

? In fact, most are mixed.
Build Cache (gradle) Search Engine (S3)

• Can we develop a silver bullet policy?
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Modern Cache Management

Policies



Modern Cache Management Policies

• ARC (2002)

• Hyperbolic (2017)

• Mini-Sim (2017)

• FRD (2017)

• W-TinyLFU (2017)
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W-TinyLFU [2]

• The cache consists of two areas:

? Window Cache which is a simple LRU cache

? Main Cache which is a SLRU cache with an admission policy

• Uses approximate counting scheme to maintain statistics of items

frequency (histogram) with periodic aging

• Items evicted from the Window Cache are candidates to enter the

Main Cache

• Default Window Cache is 1% of the cache
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Unsatisfying

Build cache (gradle) Search engine (S3) Financial (OLTP)
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Unsatisfying

Build cache (gradle) Search engine (S3) Financial (OLTP)
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Our Adaptive Caching



Basic Idea

• Dynamically adjust a selected tuning parameter

• Suggested tuning parameters:

? For W-TinyLFU: change the ratio between the cache areas

? For W-TinyLFU: change the sketch increment parameter

• Suggested adaptation approaches:

? Hill climbing: try and see what happens

? Indicator: track statistics and decide directly

• We end up with 4 suggested policies
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Parameters:

Areas Ratio

• The partition between the cache areas implies a trade-off between

recency and frequency:

? Frequency biased configuration:

? Recency biased configuration:

• Very effective:
S3 OLTP gradle
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Parameters:

Sketch

• TinyLFU sketch:

? Aging mechanism divides all the counters by 2 each S steps.

? The counters are bounded by 16.

• Enlarging the counters increment on each item’s access from 1 to

a larger value favors recency:

? Increment of 2:

? Increment of 4:
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Adaptation Techniques:

Hill Climbing

• Well known optimization technique:

• Step size: 5% or 1.

• Almost no overhead.

• Constantly changes.
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Adaptation Techniques:

Indicator

• Composed from two ingredients:

? Hint - the average of the sketch estimation for all of the accesses.

? Skew - an estimation of the skewness of the items.

• We define:

indicator ,
hint ·

(
1 − min

{
1, skew3

})
maxFreq

Which gives us a value in [0, 1].
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Results
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Results

Adaptive W-TinyLFU Sketch:

gradle S3 OLTP
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Results

Adaptive W-TinyLFU Window:

gradle S3 OLTP
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Results

Competitive for all tested workloads: X
gradle S3 OLTP

F1 DS1 WS1
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Results: Completion Time

Search Engine (S3)
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Conclusions

• Adaptation works

• Window adaptation better then sketch adaptation

• Indicator adapt quicker

But

Hill climber is simpler to implement and requires no extra space
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Thank You

Questions/Ideas?

P.S. If you could share a trace with variable item sizes for further

research, please contact me at ohadey@cs.technion.ac.il
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