—~

Y/

TECHNION
Israel Institute
of Technology

Adaptive Software Cache Management

Gil Einziger!, Ohad Eytan?, Roy Friedman? and Ben Manes®
June 3, 2019

Middleware '18

IBen Gurion University of the Negev & Nokia Bell Labs
2Technion - Israel Institute of Technology
3Independent

The Essence of Caching

The Essence of Caching

The Essence of Caching

e A fast but relatively small
memory

e Can temporarily store some

i

items of the "real storage’

e Improves performance if
hit-ratio is high

LRU [5]

Least Recently Used

Idea: recently requested items probably will be requested again

Policy: evict the oldest item from the cache

Simple & efficient

Easily polluted

LFU [5]

Least Frequently Used

Idea: most popular items probably will be requested again

Policy: evict the item with the lowest access count from cache

Complex to implement efficiently

No freshness mechanism

Problem

e Different workloads have different access patterns:

* Some are recency biased
* Some are frequency biased.

* In fact, most are mixed.
Build Cache (gradle) Search Engine (S3)

2°|
&
§w
* CGuchesieltems) T M Cache size trems]
== | RU == LFU

Problem

e Different workloads have different access patterns:

* Some are recency biased
* Some are frequency biased.

* In fact, most are mixed.
Build Cache (gradle) Search Engine (S3)

Cache Size [items]

== | RU =

e Can we develop a silver bullet policy?

Modern Cache Management
Policies

Modern Cache Management Policies

e ARC (2002 h S
H (b li)(2017) it M MLh"U['ﬁlk‘.‘f’-‘;
o erpolic RU CAR o Mini-Sim
P 1\1Q . FRD W/ ‘N
e Mini-Sim (2017) FRDE %] SLRU
© [FIRD) (20L7) Il Hyperbolic LREU™
o W-TinyLFU (2017)

W-TinyLFU [2]

W-TinyLFU [2]

e The cache consists of two areas:
* Window Cache which is a simple LRU cache
* Main Cache which is a SLRU cache with an admission policy

e Uses approximate counting scheme to maintain statistics of items
frequency (histogram) with periodic aging

e |tems evicted from the Window Cache are candidates to enter the
Main Cache

e Default Window Cache is 1% of the cache

A\ N :
Window Cache Victim > TlnyLFU {< Main Cache Victim

Window Cache (1%) :> Main Cache (99%)
‘Winner
(LRU) (SLRU)

New Item |

W-TinyLFU [2]

e The cache consists of two areas:
* Window Cache which is a simple LRU cache

* Main Cachd - rdmission policy
e Uses approxin Caffel ne n statistics of items
frequency (hist Q Chs
HsC .
e |tems evicted f| ¥ N)H/EN> Hates to enter the
Main Cache O)\N N/
e Default Windo (I:H3
Window Victim
)
Window C| S hche (99%)
-
(LK — [.RU)

New Item i

W-TinyLFU [2]

e The cache consists of two areas:
* Window Cache which is a simple LRU cache
* Main Cachd rdmission policy

e Uses approxin CaffEi ne

(0] /CH3
@) ‘ N Hates to enter the
W
® b)

n statistics of items

CHs
Window L Victim
pe——g)
Window C} G

hche (99%)
(LK — [.RU)

New Item i

W-TinyLFU [2]

e The cache consists of two areas:

* Window Cache which is a simple LRU cache

* Main Cachd - dmission policy
e Uses approxin Caffel ne n statistics of items
0 CHs
@ ' N
@neosj| | pue
N :
@ L w>
- —2>| cassandra
(LR Q:/ Janey)

New Item

W-TinyLFU [2]

e The cache consists of two areas:
* Window Cache which is a simple LRU cache
* Main Cachd dmission policy

e Uses approxin Caffel ne n statistics of items
O

CH
s

@neoy] JI> W/ﬁ%

o — 5| cassandra
= Infiniscan

",

<

Janey)

W-TinyLFU [2]

e The cache consists of two areas:
* Window Cache which is a simple LRU cache
* Main Cachd dmission policy

e Uses approxin Caffel ne n statistics of items

@neoy] 5 P 2
XTE

il HBRSEA cassandra

= Infiniscan

",

<

Unsatisfying

Build cache (gradle) Search engine (S3) Financial (OLTP)

B i , —
0 Y J—
=¥ _a=
ol A © P>
el ¥ =% = 7
g) Ko 4
S %0 Sw)
k] k] k]
a® Z 0 20 ¥
T T T
20 10
0
Cache Size [items] Cache Size [items] Cache Size [items]

== W-TinyLFU (1%) ARC == FRD

Unsatisfying

Build cache (gradle) Search engine (S3) Financial (OLTP)
e ¥ ¥ = o et
AT ¥ @ ,,/4/"

—_ —% 5
g g 2

£ ben-manes / caffeine |

51
Code (@ Issues 14 Pull requests 3 Projects 0 Wiki

cache performing worse than LRU

phraktle opened this issue on Aug 7, 2016 - 38 comments

Our Adaptive Caching

e Dynamically adjust a selected tuning parameter

e Dynamically adjust a selected tuning parameter

Suggested tuning parameters:

* For W-TinyLFU: change the ratio between the cache areas
* For W-TinyLFU: change the sketch increment parameter

Suggested adaptation approaches:

* Hill climbing: try and see what happens
* Indicator: track statistics and decide directly

We end up with 4 suggested policies

Parameters:

Areas Ratio

Parameters:

Areas Ratio

e The partition between the cache areas implies a trade-off between
recency and frequency:

* Frequency biased configuration:

| ‘Window Cache | Main Cache |

* Recency biased configuration:

| Window Cache Main Cache |

Parameters:

Areas Ratio

e The partition between the cache areas implies a trade-off between
recency and frequency:

* Frequency biased configuration:

| ‘Window Cache | Main Cache |

* Recency biased configuration:

| Window Cache Main Cache |

e Very effective:

S3] oLTP

Hit Ratio [%]
Hit Ratio [%]
Hit Ratio [%]
2

Window Cache Size

Window Cache Size [%] Window Cache Size [%]
Cache sie ems] Cache sie rems] rems)

Parameters:

e TinyLFU sketch:
* Aging mechanism divides all the counters by 2 each S steps.
* The counters are bounded by 16.

e Enlarging the counters increment on each item's access from 1 to
a larger value favors recency:

* Increment of 2:
Reset Reset
I

I
(X
\f \/
Time to Reset | _Time to Reset | _Time to Reset

=/2 events =/2 events =/2 events

Most

‘ . Recent
© O/

1

W

* Increment of 4:
Reset Reset Reset

[
Time to Reset [Time to Reset Time to Reset Time to Reset
—_——— 1 —— N ——

z/4 events z/4 events @/4 events z/4 events

10

Adaptation Techniques:

Hill Climbing

e Well known optimization technique:

Update
Config Direction

e Step size: 5% or 1.
e Almost no overhead.

e Constantly changes.

11

Adaptation Techniques:

Indicator

e Composed from two ingredients:
* Hint - the average of the sketch estimation for all of the accesses.

Reset Reset Most

| |
QOO @O0 @ O O Recent

Time to Reset : Time to Reset | Time to Reset L

12

Adaptation Techniques:

Indicator

e Composed from two ingredients:
* Hint - the average of the sketch estimation for all of the accesses.

Reset Reset Most

| |
QOO OO0 O O O Recent

Time to Reset : Time to Reset | Time to Reset L

12

Adaptation Techniques:

Indicator

e Composed from two ingredients:
* Hint - the average of the sketch estimation for all of the accesses.

Reset Reset Most

| |
QOO OO0 @ ® O Recent

Time to Reset : Time to Reset | Time to Reset L

12

Adaptation Techniques:

Indicator

e Composed from two ingredients:
* Hint - the average of the sketch estimation for all of the accesses.

Reset Reset Most

| |
QOO OO0 @ ® O Recent

: Time to Reset | Time to Reset '\
* Skew - an estimation of the skewness of the items.
o We define:

dicator & hint - (1 — min {1,skew3})
indicator =

maxFreq

Which gives us a value in [0, 1].

12

13

Adaptive W-TinyLFU Sketch:

gradle SS] OLTP
— Pt]
=Y
o “ /v
g g”
e <.
Ew £
0 *
W0 he wm @0 mw w10 105000 200000 300000 400000 50000 60000 700000 800000 E T T T TR T T
Cache size [items] Cache Size [items] Cache Size [items]

== SC-W-TinyLFU SI-W-TinyLFU == W-TinyLFU (1%)

13

Adaptive W-TinyLFU Window:

gradle S3

Hit Ratio [%]
Hit Ratio [%]

E O R 106000 200000 300000 400000 500060 600000 706000 800000 o w0 o om0 w0 1
Cache Size [items] Cache Size (items] Cache Size [items]

=W WC-W-TinyLFU == WI-W-TinyLFU =@= W-TinyLFU (1%)

13

Hit Ratio [%]

Hit Ratio [%]

Competitive for all tested workloads:

gradle

Cache Size [items]

F1

Cache Size [items]

=W \WC-W-TinyLFU

== WI-W-TinyLFU

Hit Ratio (%]

Cache Size [items]

DS1

Hit Ratio [%]

RFE

Cache Size [items]

ARC

Hit Ratio [%]

Hit Ratio [%]

Cache Size [items]

|y %

=@- W-TinyLFU (1%)

Cache Size [items]

I<l

FRD

13

)
E
[

=

=}
=
e

o

£

=}
o

o
=

)

w0

Q
(a4

Search Engine (S3)
Cache Size: 500000 [items]

led

le3

o0

(L
AN

nter

oooooo

n

o~

-
[spuo

Q
o
—

El

o 2 O
N 11 N o

53G] awi| |30 abesdny

Miss Penalty Type

ARC

mm W-TinyLFU (1%)

rw: Hyperbolic

wZa WC-W-TinyLFU
e WI-W-TinyLFU

14

Conclusions

e Adaptation works
e Window adaptation better then sketch adaptation

e Indicator adapt quicker
But

Hill climber is simpler to implement and requires no extra space

15

Conclusions

e Adaptation works
e Window adaptation better then sketch adaptation
e Indicator adapt quicker

But

Hill climber is simpler to implement and requires no extra space

EEEEEL 2.7.0
Sv2.7.0

0 2bazeal

B ben-manes released this on Feb 24

Cache

« Improved hit rates by using an adaptive eviction policy (#106)

15

Thank You

Questions/ldeas?

P.S. If you could share a trace with variable item sizes for further

research, please contact me at ohadey@cs.technion.ac.il

References i

¥ L. A Belady.
A study of replacement algorithms for a virtual-storage computer.
IBM Systems Journal, 5(2):78-101, 1966.

@ G. Einziger, R. Friedman, and B. Manes.
Tinylfu: A highly efficient cache admission policy.
CoRR, abs/1512.00727, 2015.

¥ N. Megiddo and D. S. Modha.
ARC: A self-tuning, low overhead replacement cache.
In J. Chase, editor, Proceedings of the FAST '03 Conference on File and Storage
Technologies, March 31 - April 2, 2003, Cathedral Hill Hotel, San Francisco, California, USA.
USENIX, 2003.

@ S. Park and C. Park.
Frd: A filtering based buffer cache algorithm that considers both frequency and reuse
distance.
2017.
@ A. Silberschatz, P. B. Galvin, and G. Gagne.
Operating system concepts, 7th Edition.
Wiley, 2005.

	The Essence of Caching
	Modern Cache Management Policies
	Our Adaptive Caching
	Appendix

