
Adaptive Software Cache Management

Gil Einziger1, Ohad Eytan2, Roy Friedman2 and Ben Manes3

June 3, 2019

Middleware ’18

1Ben Gurion University of the Negev & Nokia Bell Labs
2Technion - Israel Institute of Technology
3Independent



The Essence of Caching



The Essence of Caching

• A fast but relatively small

memory

• Can temporarily store some

items of the ”real storage”

• Improves performance if

hit-ratio is high

1



The Essence of Caching

• A fast but relatively small

memory

• Can temporarily store some

items of the ”real storage”

• Improves performance if

hit-ratio is high

1



LRU [5]

Least Recently Used

• Idea: recently requested items probably will be requested again

• Policy: evict the oldest item from the cache

• Simple & efficient

• Easily polluted

2



LFU [5]

Least Frequently Used

• Idea: most popular items probably will be requested again

• Policy: evict the item with the lowest access count from cache

• Complex to implement efficiently

• No freshness mechanism

3



Problem

• Different workloads have different access patterns:

? Some are recency biased

? Some are frequency biased.

? In fact, most are mixed.
Build Cache (gradle) Search Engine (S3)

• Can we develop a silver bullet policy?

4



Problem

• Different workloads have different access patterns:

? Some are recency biased

? Some are frequency biased.

? In fact, most are mixed.
Build Cache (gradle) Search Engine (S3)

• Can we develop a silver bullet policy?

4



Modern Cache Management

Policies



Modern Cache Management Policies

• ARC (2002)

• Hyperbolic (2017)

• Mini-Sim (2017)

• FRD (2017)

• W-TinyLFU (2017)

5



W-TinyLFU [2]

• The cache consists of two areas:

? Window Cache which is a simple LRU cache

? Main Cache which is a SLRU cache with an admission policy

• Uses approximate counting scheme to maintain statistics of items

frequency (histogram) with periodic aging

• Items evicted from the Window Cache are candidates to enter the

Main Cache

• Default Window Cache is 1% of the cache

6



W-TinyLFU [2]

• The cache consists of two areas:

? Window Cache which is a simple LRU cache

? Main Cache which is a SLRU cache with an admission policy

• Uses approximate counting scheme to maintain statistics of items

frequency (histogram) with periodic aging

• Items evicted from the Window Cache are candidates to enter the

Main Cache

• Default Window Cache is 1% of the cache

6



W-TinyLFU [2]

• The cache consists of two areas:

? Window Cache which is a simple LRU cache

? Main Cache which is a SLRU cache with an admission policy

• Uses approximate counting scheme to maintain statistics of items

frequency (histogram) with periodic aging

• Items evicted from the Window Cache are candidates to enter the

Main Cache

• Default Window Cache is 1% of the cache

6



W-TinyLFU [2]

• The cache consists of two areas:

? Window Cache which is a simple LRU cache

? Main Cache which is a SLRU cache with an admission policy

• Uses approximate counting scheme to maintain statistics of items

frequency (histogram) with periodic aging

• Items evicted from the Window Cache are candidates to enter the

Main Cache

• Default Window Cache is 1% of the cache

6



W-TinyLFU [2]

• The cache consists of two areas:

? Window Cache which is a simple LRU cache

? Main Cache which is a SLRU cache with an admission policy

• Uses approximate counting scheme to maintain statistics of items

frequency (histogram) with periodic aging

• Items evicted from the Window Cache are candidates to enter the

Main Cache

• Default Window Cache is 1% of the cache

6



W-TinyLFU [2]

• The cache consists of two areas:

? Window Cache which is a simple LRU cache

? Main Cache which is a SLRU cache with an admission policy

• Uses approximate counting scheme to maintain statistics of items

frequency (histogram) with periodic aging

• Items evicted from the Window Cache are candidates to enter the

Main Cache

• Default Window Cache is 1% of the cache

6



W-TinyLFU [2]

• The cache consists of two areas:

? Window Cache which is a simple LRU cache

? Main Cache which is a SLRU cache with an admission policy

• Uses approximate counting scheme to maintain statistics of items

frequency (histogram) with periodic aging

• Items evicted from the Window Cache are candidates to enter the

Main Cache

• Default Window Cache is 1% of the cache

6



Unsatisfying

Build cache (gradle) Search engine (S3) Financial (OLTP)

7



Unsatisfying

Build cache (gradle) Search engine (S3) Financial (OLTP)

7



Our Adaptive Caching



Basic Idea

• Dynamically adjust a selected tuning parameter

• Suggested tuning parameters:

? For W-TinyLFU: change the ratio between the cache areas

? For W-TinyLFU: change the sketch increment parameter

• Suggested adaptation approaches:

? Hill climbing: try and see what happens

? Indicator: track statistics and decide directly

• We end up with 4 suggested policies

8



Basic Idea

• Dynamically adjust a selected tuning parameter

• Suggested tuning parameters:

? For W-TinyLFU: change the ratio between the cache areas

? For W-TinyLFU: change the sketch increment parameter

• Suggested adaptation approaches:

? Hill climbing: try and see what happens

? Indicator: track statistics and decide directly

• We end up with 4 suggested policies

8



Parameters:

Areas Ratio

• The partition between the cache areas implies a trade-off between

recency and frequency:

? Frequency biased configuration:

? Recency biased configuration:

• Very effective:
S3 OLTP gradle

9



Parameters:

Areas Ratio

• The partition between the cache areas implies a trade-off between

recency and frequency:

? Frequency biased configuration:

? Recency biased configuration:

• Very effective:
S3 OLTP gradle

9



Parameters:

Areas Ratio

• The partition between the cache areas implies a trade-off between

recency and frequency:

? Frequency biased configuration:

? Recency biased configuration:

• Very effective:
S3 OLTP gradle

9



Parameters:

Sketch

• TinyLFU sketch:

? Aging mechanism divides all the counters by 2 each S steps.

? The counters are bounded by 16.

• Enlarging the counters increment on each item’s access from 1 to

a larger value favors recency:

? Increment of 2:

? Increment of 4:

10



Adaptation Techniques:

Hill Climbing

• Well known optimization technique:

• Step size: 5% or 1.

• Almost no overhead.

• Constantly changes.

11



Adaptation Techniques:

Indicator

• Composed from two ingredients:

? Hint - the average of the sketch estimation for all of the accesses.

? Skew - an estimation of the skewness of the items.

• We define:

indicator ,
hint ·

(
1 − min

{
1, skew3

})
maxFreq

Which gives us a value in [0, 1].

12



Adaptation Techniques:

Indicator

• Composed from two ingredients:

? Hint - the average of the sketch estimation for all of the accesses.

? Skew - an estimation of the skewness of the items.

• We define:

indicator ,
hint ·

(
1 − min

{
1, skew3

})
maxFreq

Which gives us a value in [0, 1].

12



Adaptation Techniques:

Indicator

• Composed from two ingredients:

? Hint - the average of the sketch estimation for all of the accesses.

? Skew - an estimation of the skewness of the items.

• We define:

indicator ,
hint ·

(
1 − min

{
1, skew3

})
maxFreq

Which gives us a value in [0, 1].

12



Adaptation Techniques:

Indicator

• Composed from two ingredients:

? Hint - the average of the sketch estimation for all of the accesses.

? Skew - an estimation of the skewness of the items.

• We define:

indicator ,
hint ·

(
1 − min

{
1, skew3

})
maxFreq

Which gives us a value in [0, 1].

12



Results

13



Results

Adaptive W-TinyLFU Sketch:

gradle S3 OLTP

13



Results

Adaptive W-TinyLFU Window:

gradle S3 OLTP

13



Results

Competitive for all tested workloads: X
gradle S3 OLTP

F1 DS1 WS1

13



Results: Completion Time

Search Engine (S3)

14



Conclusions

• Adaptation works

• Window adaptation better then sketch adaptation

• Indicator adapt quicker

But

Hill climber is simpler to implement and requires no extra space

15



Conclusions

• Adaptation works

• Window adaptation better then sketch adaptation

• Indicator adapt quicker

But

Hill climber is simpler to implement and requires no extra space

15



Thank You

Questions/Ideas?

P.S. If you could share a trace with variable item sizes for further

research, please contact me at ohadey@cs.technion.ac.il



References i

L. A. Belady.

A study of replacement algorithms for a virtual-storage computer.

IBM Systems Journal, 5(2):78–101, 1966.

G. Einziger, R. Friedman, and B. Manes.

Tinylfu: A highly efficient cache admission policy.

CoRR, abs/1512.00727, 2015.

N. Megiddo and D. S. Modha.

ARC: A self-tuning, low overhead replacement cache.

In J. Chase, editor, Proceedings of the FAST ’03 Conference on File and Storage

Technologies, March 31 - April 2, 2003, Cathedral Hill Hotel, San Francisco, California, USA.

USENIX, 2003.

S. Park and C. Park.

Frd: A filtering based buffer cache algorithm that considers both frequency and reuse

distance.

2017.

A. Silberschatz, P. B. Galvin, and G. Gagne.

Operating system concepts, 7th Edition.

Wiley, 2005.


	The Essence of Caching
	Modern Cache Management Policies
	Our Adaptive Caching
	Appendix

