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The Essence of Caching

e A fast but relatively small
memory

e Can temporarily store some

i

items of the "real storage’

e Improves performance if
hit-ratio is high




LRU [5]

Least Recently Used

Idea: recently requested items probably will be requested again

Policy: evict the oldest item from the cache

Simple & efficient

Easily polluted




LFU [5]

Least Frequently Used

Idea: most popular items probably will be requested again

Policy: evict the item with the lowest access count from cache

Complex to implement efficiently

No freshness mechanism




Problem

e Different workloads have different access patterns:

* Some are recency biased
* Some are frequency biased.

* In fact, most are mixed.
Build Cache (gradle) Search Engine (S3)
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Problem

e Different workloads have different access patterns:

* Some are recency biased
* Some are frequency biased.

* In fact, most are mixed.
Build Cache (gradle) Search Engine (S3)

Cache Size [items]

== | RU =

e Can we develop a silver bullet policy?




Modern Cache Management
Policies



Modern Cache Management Policies
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W-TinyLFU [2]



W-TinyLFU [2]

e The cache consists of two areas:
* Window Cache which is a simple LRU cache
* Main Cache which is a SLRU cache with an admission policy

e Uses approximate counting scheme to maintain statistics of items
frequency (histogram) with periodic aging

e |tems evicted from the Window Cache are candidates to enter the
Main Cache

e Default Window Cache is 1% of the cache
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W-TinyLFU [2]

e The cache consists of two areas:
* Window Cache which is a simple LRU cache

* Main Cachd - rdmission policy
e Uses approxin Caffel ne n statistics of items
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W-TinyLFU [2]

e The cache consists of two areas:
* Window Cache which is a simple LRU cache
* Main Cachd rdmission policy

e Uses approxin CaffEi ne
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W-TinyLFU [2]

e The cache consists of two areas:

* Window Cache which is a simple LRU cache

* Main Cachd - dmission policy
e Uses approxin Caffel ne n statistics of items
0 CHs
@ ' N
@neosj| | pue
N :
@ L w>
- —2>| cassandra
(LR Q:/ Janey)

New Item



W-TinyLFU [2]

e The cache consists of two areas:
* Window Cache which is a simple LRU cache
* Main Cachd dmission policy

e Uses approxin Caffel ne n statistics of items
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W-TinyLFU [2]

e The cache consists of two areas:
* Window Cache which is a simple LRU cache
* Main Cachd dmission policy

e Uses approxin Caffel ne n statistics of items
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Unsatisfying

Build cache (gradle) Search engine (S3) Financial (OLTP)
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Unsatisfying

Build cache (gradle) Search engine (S3) Financial (OLTP)
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cache performing worse than LRU

phraktle opened this issue on Aug 7, 2016 - 38 comments




Our Adaptive Caching




e Dynamically adjust a selected tuning parameter



e Dynamically adjust a selected tuning parameter

Suggested tuning parameters:

* For W-TinyLFU: change the ratio between the cache areas
* For W-TinyLFU: change the sketch increment parameter

Suggested adaptation approaches:

* Hill climbing: try and see what happens
* Indicator: track statistics and decide directly

We end up with 4 suggested policies



Parameters:

Areas Ratio




Parameters:

Areas Ratio

e The partition between the cache areas implies a trade-off between
recency and frequency:

* Frequency biased configuration:

| ‘Window Cache | Main Cache |

* Recency biased configuration:

| Window Cache Main Cache |




Parameters:

Areas Ratio

e The partition between the cache areas implies a trade-off between
recency and frequency:

* Frequency biased configuration:

| ‘Window Cache | Main Cache |

* Recency biased configuration:

| Window Cache Main Cache |

e Very effective:

S3] oLTP

Hit Ratio [%]
Hit Ratio [%]
Hit Ratio [%]
2

Window Cache Size

Window Cache Size [%] Window Cache Size [%]
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Parameters:

e TinyLFU sketch:
* Aging mechanism divides all the counters by 2 each S steps.
* The counters are bounded by 16.

e Enlarging the counters increment on each item's access from 1 to
a larger value favors recency:

* Increment of 2:
Reset Reset
I

I
(X
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Time to Reset | _Time to Reset | _Time to Reset
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* Increment of 4:
Reset Reset Reset

[
Time to Reset [ Time to Reset Time to Reset Time to Reset
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Adaptation Techniques:

Hill Climbing

e Well known optimization technique:

Update
Config Direction

e Step size: 5% or 1.
e Almost no overhead.

e Constantly changes.
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Adaptation Techniques:

Indicator

e Composed from two ingredients:
* Hint - the average of the sketch estimation for all of the accesses.

Reset Reset Most
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Adaptation Techniques:

Indicator

e Composed from two ingredients:
* Hint - the average of the sketch estimation for all of the accesses.

Reset Reset Most
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Time to Reset : Time to Reset | Time to Reset L
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Adaptation Techniques:

Indicator

e Composed from two ingredients:
* Hint - the average of the sketch estimation for all of the accesses.

Reset Reset Most

| |
QOO OO0 @ ® O Recent

Time to Reset : Time to Reset | Time to Reset L
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Adaptation Techniques:

Indicator

e Composed from two ingredients:
* Hint - the average of the sketch estimation for all of the accesses.

Reset Reset Most

| |
QOO OO0 @ ® O Recent

: Time to Reset | Time to Reset '\
* Skew - an estimation of the skewness of the items.
o We define:

dicator & hint - (1 — min {1,skew3})
indicator =

maxFreq

Which gives us a value in [0, 1].
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Adaptive W-TinyLFU Sketch:
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Adaptive W-TinyLFU Window:

gradle S3

Hit Ratio [%]
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Hit Ratio [%]

Hit Ratio [%]

Competitive for all tested workloads:

gradle

Cache Size [items]

F1

Cache Size [items]
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== WI-W-TinyLFU
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Conclusions

e Adaptation works
e Window adaptation better then sketch adaptation

e Indicator adapt quicker
But

Hill climber is simpler to implement and requires no extra space
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Conclusions

e Adaptation works
e Window adaptation better then sketch adaptation
e Indicator adapt quicker

But

Hill climber is simpler to implement and requires no extra space
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Cache

« Improved hit rates by using an adaptive eviction policy (#106)
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Thank You

Questions/ldeas?

P.S. If you could share a trace with variable item sizes for further

research, please contact me at ohadey@cs.technion.ac.il
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