
Future Direction

Merely disabling hugepage cannot be the best 
solution.

Preparing 512 dirty flags for a hugepage every 
4KiB would work, since the root cause is that a dirty 
flag manages a 2MiB page as a whole. This 
solution reduces the size of wasted cache line flush 
to nearly zero when msync() requests the flushing 
of a small region.

In addition, some optimizations may be required if a 
large flush is asked, like one near 2MiB, since 
flushing 512 4KiB pages would take longer 
compared to a 2MiB page flush.

It is a side effect of DAX hugepage.

When we try to map a region greater than 2MiB, 
the ext4 filesystem tries to map 2MiB pages instead 
of 4KiB pages. Hugepage support has several 
advantages, such as fewer page faults, smaller 
page tables, and less TLB contention.

Since one dirty flag is assigned to a whole 2MiB 
page, a 4KiB msync() incurs a 2MiB flush, which 
is 512 times larger.

Root Cause of The Problem

0
1
2
3
4
5
6

PMem SSD PMem

w/ hugepage w/o

[m
s]

Kyoto Cabinet: Latency

others

msync()

Measurement without Hugepage

These graphs show how hugepage’s side effect is 
large. They are gained with a kernel in which 
CONFIG_FS_DAX_PMD is disabled.

Persistent Memory (PMem)

 Features
1. Fast compared to traditional storage devices like 

SSDs
2. Byte addressable (Load/Store instead of 

Read/Write)

A combination of filesystem direct access (DAX) 
and mmap() enables file access on PMem with its 
native ability.
 Avoid buffer cache
 Load/Store access

msync() vs. pmem_persist()

We need to call a CPU instruction such as CLWB or 
CLFLUSHOPT to synchronize CPU cache to persist 
stored data to a PMem.
 msync(): A system call
👍 Legacy applications which use mmap() and 
msync() for speeding up access to conventional 
storage devices are easy to port to PMem
without any code modifications

 pmem_persist(): A function included in PMDK
👍 Fast since it directly calls CPU instructions 
from user space

A Performance Problem

We faced a problem where msync() was 
tremendously slow compared to pmem_persist()

 4KiB random store for a 100MiB file with fio

 Kyoto Cabinet’s SET operation
Kyoto Cabinet is a library of routines for managing a 
database. Though its original target is not a PMem, it 
uses mmap() and msync() for speeding up.

This measurement is done with Intel Optane DC 
Persistent Memory, ext4 filesystem on Linux Kernel 
5.4.0, fio 3.23, and Kyoto Cabinet 1.2.79.

0

2

4

6

PMem SSD

[m
s]

Kyoto Cabinet: Latency

others

msync()

0

50

100

150

200

mmap libpmem

[k
 IO

P
S

]

Fio: Throughput

FUJITSU LABORATORIES LTD.

An Investigation of Performance Problems with msync()
System Calls on Filesystem DAX
Satoshi Iwata

100x
0

50

100

150

200

mmap libpmem mmap

w/ hugepage w/o

[k
 IO

P
S

]

Fio: Throughput
158x

1.1k


