
§ We evaluated our proposed design on 120-core manycore server equipped
with 740GB memory and Samsung 970 EVO SSD.

§ We compared the proposed approach with Baseline (Vanilla F2FS version).
§ We tested using MWUL workload in FxMark, where multiple threads

perform unlink in their private directory in MWUL workload.
§ The proposed approach outperforms Baseline F2FS and improved

manycore scalability to 15 cores.
§ Throughput of proposed design sustains after 15 core due to the mutex

lock in the call path. We identified this is the fundamental limiting factor.

We propose two techniques(Optimistic Free nid Scan, Heuristic Free
nid Bitmap Scan) to mitigate thread execution efficiency in parallel
unlink() and unnecessary search in Free nid Scan .

1. Optimistic Free nid Scan divides the Free nid Scan into two parts
to increase the thread execution efficiency.

Step ① . Scanning Free nid Bitmap.
Step ②. Only case for Step 1 fails, fill Free nid from NAT in the SSD.

§ In vanilla F2FS, most of the threads are blocked until the preceding
one finishes Free nid Scan.

§ By the Optimistic Free nid Scan, threads that were previously
blocked will not be blocked any longer, increasing thread's parallel
execution efficiency.

2. Heuristic Free nid Bitmap Scan starts scanning from point where
previous Bitmap Scan ended.

§ In vanilla F2FS, Free nid Bitmap Scan starts from the beginning of
the bitmap, increasing the latency of Free nid Bitmap Scan.

§ Figure 6 shows by Heuristic Free nid Bitmap Scan, the total bitmap
scanning time is reduced, and the blocking time of threads is
minimized.

§ Figure 2 shows the F2FS File Structure with Node.
§ Node is identified via nid and stored in an on-disk structure, Node

Address Table (NAT).

§ Figure 3 shows how F2FS processes unlink() with on-disk & in-memory
data structures including NAT.

Step ①. Find inode by checking cached node in memory.
Step ②. Find the Direct Node’s id in cached NAT.
Step ③. Check the number of Free nids. If it is not sufficient, refill Free nid.
Step ④. Delete Direct node’s link to File data that will be deleted.

§ F2FS should maintain enough Free nids for future create().
§ Free nid Bitmap to check Free nid is used to obtain Free nid fast in

memory.
§ If Free nid is below the threshold, F2FS will run Free nid Scan, which scans

the Free nid Bitmap and checks the NAT directly.

Enabling Manycore Scalability in F2FS Metadata for unlink() Operation
Soon Hwang, Chang-Gyu Lee, Youngjae Kim

Department of Computer Science and Engineering
Sogang University, Seoul, Republic of Korea

{hs950826, changgyu, youkim}@sogang.ac.kr

§ Manycore servers are expected to bring great scalability in file
systems due to their large number of cores.

§ However, file create and delete in F2FS do not scale.

§ We tested file create & unlink scalability with F2FS using FxMark.

F2FS Metadata Scalability Limitations

Unlink Metadata Operation in F2FS

Data Block

Direct Block

Indirect Block

Inode

Figure 2. < F2FS File Structure>

Managed
as NODE
in F2FS

Figure 6. < Scan length reduction by Heuristic Free nid Bitmap Scan>

(a) Exhaustive Scan in vanilla F2FS (b) Compact Scan by Heuristic Free nid Bitmap Scan ①

③

②

④Cached

Figure 3. <unlink() process in F2FS>

on-disk

memory

Proposed Design and Implementation

w

Metadata Scalability Bottlenecks

Evaluation

§ The main cause of the scalability
bottleneck of F2FS for parallel
unlink operations in the
Manycore system is a large
critical section (CS).

§ Figure 4 shows that parallel
processing efficiency of threads
executing unlink() is highly
limited by a large CS in Free nid
Scan.

Acknowledgement
This work was supported by Institute for Information & communications Technology
Promotion(IITP) grant funded by the Korea government(MSIT) (No. 2014-0-00035,
Research on High Performance and Scalable Manycore Operating System).

(a) create (b) unlink
Figure 1. < Manycore scalability in file create & unlink in F2FS>

Figure 4. < Blocking in Free nid Scan >

Free nid
Scan

Blocked

Figure 5. < Improved Parallel I/O by Optimistic Free nid Scan >

Free nid
Scan

Blocked

Divide CS

Exit without blocking!

Free nid Bitmap Scan

Check NAT in SSD

②

