Performance Requirements

MODAK focuses on supporting three major application types for static optimisation: AI training/Inference, Big Data Analytics and Traditional HPC.

Vision

Simpler and faster development, deployment, operation and execution of heterogeneous apps in HPC, Cloud & SW-defined computing environments.

Architecture

A pattern-based abstraction library that includes application, infrastructure, and performance abstractions.

A design and programming model for applications and infrastructures based on the abstraction library.

A deployment framework that enables the static optimization of abstracted applications onto specific infrastructures.

Automated static and run-time optimization and management of applications.

MODAK - Model based Optimiser for Deployment of Application (with Kontainers)

MODAK maps the optimal application parameters to the infrastructure under grant agreement No 825480.

AI Example

AI example shows how the data scientist will use the SODALITE framework by specifying the data, config and optimisations options while deploying an AI network written in a high-level API. The SODALITE application optimiser will select a preferred AI framework, optimised library and compiler and then build an optimised container. This will then be deployed to an HPC or Cloud infrastructure.

Comparison of AI Frameworks

Performance of different AI frameworks (in singularity container) for a MNIST CNN training workload in CPU only.

Performance of AI frameworks in singularity containers built from source.

Performance of AI frameworks in singularity containers with Graph compilers.

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 825480.